经常有一些需要做id打通的场景,比如用户id打通等,

问题抽象是每条数据都可以解析出一个或多个kv pair:(id_type,id),然后需要将某一个kv pair匹配的多条数据进行merge;

比如:

data1: Array(('type1', 'id1'), ('type2', 'id2'))

data2: Array(('type1', 'id1'), ('type3', 'id3'))

data3: Array(('type2', 'id2'), ('type4', 'id4'))

其中data1和data2通过('type1', 'id1')打通,data1和data3通过('type2', 'id2')打通,最终data1、data2、data3打通成一条数据

data_union: Array(('type1', 'id1'), ('type2', 'id2'), , ('type3', 'id3'), , ('type4', 'id4'))

先定义基础类和方法

  class Data {
def getId : String = ""
} def merge(dataArr : Array[(Map[Byte, String], Data)]) : (Map[Byte, String], Data) = dataArr.head
def generateUUID : String = ""

其中

1)Data表示数据抽象,每条数据都有一个id;

2)Map[Byte, String]表示数据中的kv pair,即 Map[id_type, id]

3)merge将多条数据打通成一条数据;

先看最简单的递归实现

  def unionDataRDD1(rdd : RDD[(Map[Byte, String], Data)]) : RDD[(Map[Byte, String], Data)] = {
var result = rdd.keyBy(_._2.getId).groupByKey.map(item => merge(item._2.toArray)).cache
//Array[id_type]
val idTypes = result.flatMap(item => item._1.keys).distinct.collect
idTypes.foreach(item => result = result.filter(_._1.contains(item)).keyBy(_._1.get(item).get).groupByKey.map(item => merge(item._2.toArray)).union(result.filter(!_._1.contains(item))))
result
}

性能不太好,再看优化后的非递归实现

  def unionDataRDD2(rdd : RDD[(Map[Byte, String], Data)]) : RDD[(Map[Byte, String], Data)] = {
val result = rdd.keyBy(_._2.getId).groupByKey.map(item => merge(item._2.toArray)).cache //((id_type, id), group)
val idGroupRDD = result.flatMap(item => {val uuid = generateUUID; item._1.toArray.map(entry => (entry, uuid))}).cache
//Array(Array(group))
val unionMap = idGroupRDD.groupByKey.map(_._2.toArray.distinct).filter(_.length > 1).collect
//Map(group -> union_group)
.foldLeft(Map[String, String]())((resultUnion, arr) => {
val existingGroupMap = arr.collect({case group : String if resultUnion.contains(group) => (group, resultUnion.get(group).get)}).toMap
if (existingGroupMap == null || existingGroupMap.isEmpty) resultUnion ++ arr.collect({case group : String => (group -> arr.head)}).toMap
else if (existingGroupMap.size == 1) resultUnion ++ arr.collect({case group : String => (group -> existingGroupMap.head._2)}).toMap
else {
val newUnionMap = existingGroupMap.map(_._2).collect({case group : String => (group -> existingGroupMap.head._2)}).toMap
resultUnion.collect({case entry : (String, String) => if (newUnionMap.contains(entry._2)) (entry._1, newUnionMap.get(entry._2).get) else entry}) ++ arr.collect({case group : String => (group -> newUnionMap.head._2)}).toMap
}
}) //((id_type, id), union_group)
val groupMap = idGroupRDD.map(item => (item._1, if (unionMap.contains(item._2)) unionMap.get(item._2).get else null)).filter(_._2 != null).collect.toMap
//(union_group, data)
val groupRDDWithUnion = result.map(item => (item._1.collectFirst({case entry : (Byte, String) if groupMap.contains(entry) => groupMap.get(entry).get}), item)).cache
groupRDDWithUnion.filter(_._1 != None).groupByKey.map(item => merge(item._2.toArray)).union(groupRDDWithUnion.filter(_._1 == None).map(_._2))
}

第二版优化

  def unionDataRDD3(rdd : RDD[(Map[Byte, String], Data)]) : RDD[(Map[Byte, String], Data)] = {
val result = rdd.keyBy(_._2.getId).groupByKey.map(item => merge(item._2.toArray)).cache //((id_type, id), Set[group])
val idGroupArray = result.zipWithUniqueId().flatMap(item => item._1._1.toArray.map(entry => (entry, item._2.toString))).aggregateByKey(Set[String]())((result, item) => result + item, (result1, result2) => result1 ++ result2).collect //Array(Array(group))
val unionMap = idGroupArray.map(_._2).foldLeft(Map[String, String]())((resultUnion, arr) => {
val existingGroupMap = arr.collect({case group : String if resultUnion.contains(group) => (group, resultUnion.get(group).get)}).toMap
if (existingGroupMap == null || existingGroupMap.isEmpty) resultUnion ++ arr.collect({case group : String => (group -> arr.head)}).toMap
else if (existingGroupMap.size == 1) resultUnion ++ arr.collect({case group : String => (group -> existingGroupMap.head._2)}).toMap
else {
val newUnionMap = existingGroupMap.map(_._2).collect({case group : String => (group -> existingGroupMap.head._2)}).toMap
resultUnion.collect({case entry : (String, String) => if (newUnionMap.contains(entry._2)) (entry._1, newUnionMap.get(entry._2).get) else entry}) ++ arr.collect({case group : String => (group -> newUnionMap.head._2)}).toMap
}
}) //(id_type, (id, union_group))
val groupMap = idGroupArray.foldLeft(Map[Byte, Map[String, String]]())((result, item) => if (!result.contains(item._1._1)) result + (item._1._1 -> Map(item._1._2 -> unionMap.get(item._2.head).get)) else result + (item._1._1 -> (result.get(item._1._1).get + (item._1._2 -> unionMap.get(item._2.head).get))))
//(union_group, order)
result.map(item => (item._1.collectFirst({case entry : (Byte, String) if groupMap.contains(entry._1) && groupMap.get(entry._1).get.contains(entry._2) => groupMap.get(entry._1).get.get(entry._2).get}), item)).groupByKey.map(item => merge(item._2.toArray))
}

【原创】大叔案例分享(5)id打通的更多相关文章

  1. 【原创】大叔案例分享(4)定位分析--见证scala的强大

    一 场景分析 定位分析广泛应用,比如室外基站定位,室内蓝牙beacon定位,室内wifi探针定位等,实现方式是三点定位 Trilateration 理想情况 这种理想情况要求3个基站‘同时’采集‘准确 ...

  2. 【原创】大叔案例分享(3)用户行为分析--见证scala的强大

    一 场景分析 用户行为分析应用的场景很多,像线上网站访问统计,线下客流分析(比如图像人脸识别.wifi探针等),比较核心的指标有几个: PV | UV | SD | SC 指标说明: PV(Page ...

  3. ArcGIS Add-in插件开发从0到1及实际案例分享

    同学做毕设,要求我帮着写个ArcGIS插件,实现功能为:遍历所有图斑,提取相邻图斑的公共边长及其他属性(包括相邻图斑的ID),链接到属性表中.搞定后在这里做个记录.本文分两大部分: ArcGIS插件开 ...

  4. Office 2010 KMS激活原理和案例分享

    Office 2010 KMS激活原理和案例分享     为了减低部署盗版(可能包含恶意软件.病毒和其他安全风险)的可能性,Office 2010面向企业客户推出了新的批量激活方式:KMS和MAK.这 ...

  5. Office 2010 KMS激活原理和案例分享 - Your Office Solution Here - Site Home - TechNet Blogs

    [作者:葛伟华.张玉工程师 ,  Office/Project支持团队, 微软亚太区全球技术支持中心 ] 为了减低部署盗版(可能包含恶意软件.病毒和其他安全风险)的可能性,Office 2010面向企 ...

  6. 老李案例分享:MAT分析应用程序服务出现内存溢出过程

    老李案例分享:MAT分析应用程序服务出现内存溢出过程   poptest是国内唯一一家培养测试开发工程师的培训机构,以学员能胜任自动化测试,性能测试,测试工具开发等工作为目标.在poptest的loa ...

  7. 老李案例分享:定位JAVA内存溢出

    老李案例分享:定位JAVA内存溢出   poptest是国内唯一一家培养测试开发工程师的培训机构,以学员能胜任自动化测试,性能测试,测试工具开发等工作为目标.在poptest的loadrunner的培 ...

  8. [转载]DevOps在传统企业的落地实践及案例分享

    内容来源:2017年6月10日,优维科技高级解决方案架构师黄星玲在“DevOps&SRE 超越传统运维之道”进行<DevOps在传统企业的落地实践及案例分享>演讲分享.IT 大咖说 ...

  9. mysql的"双1设置"-数据安全的关键参数(案例分享)

    mysql的"双1验证"指的是innodb_flush_log_at_trx_commit和sync_binlog两个参数设置,这两个是是控制MySQL 磁盘写入策略以及数据安全性 ...

随机推荐

  1. LeetCode 279. 完全平方数(Perfect Squares)

    题目描述 给定正整数 n,找到若干个完全平方数(比如 1, 4, 9, 16, ...)使得它们的和等于 n.你需要让组成和的完全平方数的个数最少. 示例 1: 输入: n = 12 输出: 3 解释 ...

  2. jquery中mouseover和mouseenter的区别

    jquery中mouseover和mouseenter的区别 一.总结 一句话总结: 见名知意:enter(进入)和over(在上方)的意思好好思考一下 mouseover就是从子元素回到自己的时候也 ...

  3. MySQL5.7 创建及查看数据库

    1.创建数据库语句create database语句是在MySQL实例上创建一个指定名称的数据库.create schema语句的语义和create database是一样的. 2.语法解析 CREA ...

  4. outlier异常值检验算法之_箱型图(附python代码)

    python机器学习-乳腺癌细胞挖掘(博主亲自录制视频) https://study.163.com/course/introduction.htm?courseId=1005269003&u ...

  5. 解决WAMP Server与IIS端口冲突问题

    版本前提: 腾讯云服务器 windows server 2012 R2 WampServer3.10  64bit 有两种思路 一.修改wamp端口 文件位置   C:\wamp64\bin\apac ...

  6. 如何将ubuntu16.04升级到ubuntu 18.04?

    答:步骤如下: 1. sudo apt update (更新软件源) 2. sudo apt upgrade (更新内核相关的包) 3. sudo apt dist-upgrade 4.  sudo ...

  7. vue 动态组件,传递参数

    <template> <div class="top"> <div class='nav'> <ul class='navHader'&g ...

  8. hibernate一对一映射

    package loaderman.c_one2one; // 身份证 public class IdCard { // 身份证号(主键) private String cardNum;// 对象唯一 ...

  9. 【11】ajax请求后台接口数据与返回值处理js写法

    $.ajax({ url: "/test.php",//后台提供的接口 type: "post",   //请求方式是post data:{"type ...

  10. java(SSM)上传文件到七牛云(对象存储)

    项目中会用到大量的图片和小视频,为了分担服务器压力,将文件都放在七牛云.这里的思路很简单, 就是移动端.pc端把文件上传到服务器,服务器做一个临时缓存,保存必要的信息到数据库后, 将文件上传到七牛云, ...