Codevs 4927 线段树练习5(分块)
4927 线段树练习5
时间限制: 1 s
空间限制: 128000 KB
题目等级 : 黄金 Gold
题目描述 Description
有n个数和5种操作
add a b c:把区间[a,b]内的所有数都增加c
set a b c:把区间[a,b]内的所有数都设为c
sum a b:查询区间[a,b]的区间和
max a b:查询区间[a,b]的最大值
min a b:查询区间[a,b]的最小值
输入描述 Input Description
第一行两个整数n,m,第二行n个整数表示这n个数的初始值
接下来m行操作,同题目描述
输出描述 Output Description
对于所有的sum、max、min询问,一行输出一个答案
样例输入 Sample Input
10 6
3 9 2 8 1 7 5 0 4 6
add 4 9 4
set 2 6 2
add 3 8 2
sum 2 10
max 1 7
min 3 6
样例输出 Sample Output
49
11
4
数据范围及提示 Data Size & Hint
10%:1
/*
分块.
这题改了一个下午.
直接呵呵了.
思路是挺简单的,但是实现起来有点鬼畜.
哎就不说啥了 码力太弱.
注意几个细节.
重构不完整的块时要注意区间和贡献的计算还有每个位置的值应该是啥.
★x,y在同一个块中不要忘了重构y到块末的贡献.
然后区分该区间是否被"set",重构的话把标记清掉.
感谢前人的分块solution code 给了我debug一个下午的可能hhh.
*/
#include<cstdio>
#include<cmath>
#include<iostream>
#define MAXN 200001
#define MAXM 200001
#define LL long long
#define INF 1e18
using namespace std;
int n,m,q,belong[MAXN];
LL ans,s[MAXN],sum[MAXM],tot,tag[MAXM],bj[MAXM],max1[MAXM],min1[MAXM];
bool b[MAXM];
LL read()
{
LL x=0,f=1;char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
while(ch>='0'&&ch<='9') x=x*10+ch-48,ch=getchar();
return x*f;
}
void sloveadd(int x,int y,LL z)
{
for(int i=x;i<=min(belong[x]*m,y);i++)
{
if(b[belong[x]]) s[i]=bj[belong[x]]+tag[belong[x]]+z;
else s[i]+=z+tag[belong[x]];
sum[belong[x]]+=z;
}
if(belong[x]==belong[y])
{
for(int i=y+1;i<=belong[y]*m;i++)
{
if(b[belong[y]]) s[i]=bj[belong[y]]+tag[belong[y]];
else s[i]+=tag[belong[y]];
}
}
for(int i=(belong[x]-1)*m+1;i<=x-1;i++)
{
if(b[belong[x]]) s[i]=bj[belong[x]]+tag[belong[x]];
else s[i]+=tag[belong[x]];
}
b[belong[x]]=false;tag[belong[x]]=0;
max1[belong[x]]=-INF,min1[belong[x]]=INF;
for(int i=(belong[x]-1)*m+1;i<=min(n,belong[x]*m);i++)
{
max1[belong[i]]=max(max1[belong[i]],s[i]+tag[belong[i]]);
min1[belong[i]]=min(min1[belong[i]],s[i]+tag[belong[i]]);
}
for(int i=belong[x]+1;i<=belong[y]-1;i++)
sum[i]+=z*m,tag[i]+=z,max1[i]+=z,min1[i]+=z;
if(belong[x]!=belong[y])
{
for(int i=(belong[y]-1)*m+1;i<=y;i++)
{
if(b[belong[y]]) s[i]=bj[belong[y]]+tag[belong[y]]+z;
else s[i]+=z+tag[belong[y]];
sum[belong[y]]+=z;
}
for(int i=y+1;i<=min(n,belong[y]*m);i++)
{
if(b[belong[y]]) s[i]=bj[belong[y]]+tag[belong[y]];
else s[i]+=tag[belong[y]];
}
max1[belong[y]]=-INF,min1[belong[y]]=INF;
b[belong[y]]=false;tag[belong[y]]=0;
max1[belong[y]]=-INF,min1[belong[y]]=INF;
for(int i=(belong[y]-1)*m+1;i<=min(n,belong[y]*m);i++)
{
max1[belong[y]]=max(max1[belong[y]],s[i]+tag[belong[y]]);
min1[belong[y]]=min(min1[belong[y]],s[i]+tag[belong[y]]);
}
}
return ;
}
void slovechange(int x,int y,LL z)
{
for(int i=x;i<=min(belong[x]*m,y);i++)
{
if(!b[belong[x]]) sum[belong[x]]+=z-s[i]-tag[belong[x]];
else sum[belong[x]]+=z-bj[belong[x]]-tag[belong[x]];
s[i]=z;
}
if(belong[x]==belong[y])
{
for(int i=y+1;i<=belong[y]*m;i++)
{
if(b[belong[y]]) s[i]=bj[belong[y]]+tag[belong[y]];
else s[i]+=tag[belong[y]];
}
}
for(int i=(belong[x]-1)*m+1;i<=x-1;i++)
{
if(b[belong[x]]) s[i]=bj[belong[x]]+tag[belong[x]];
else s[i]+=tag[belong[x]];
}
b[belong[x]]=false;tag[belong[x]]=0;
max1[belong[x]]=-INF,min1[belong[x]]=INF;
for(int i=(belong[x]-1)*m+1;i<=min(n,belong[x]*m);i++)
{
max1[belong[i]]=max(max1[belong[i]],s[i]+tag[belong[i]]);
min1[belong[i]]=min(min1[belong[i]],s[i]+tag[belong[i]]);
}
for(int i=belong[x]+1;i<=belong[y]-1;i++)
sum[i]=z*m,tag[i]=0,b[i]=true,max1[i]=z,min1[i]=z,bj[i]=z;
if(belong[x]!=belong[y])
{
for(int i=(belong[y]-1)*m+1;i<=y;i++)
{
if(!b[belong[y]]) sum[belong[y]]+=z-s[i]-tag[belong[y]];
else sum[belong[y]]+=z-bj[belong[y]]-tag[belong[y]];
s[i]=z;
}
for(int i=y+1;i<=min(n,belong[y]*m);i++)
{
if(b[belong[y]]) s[i]=bj[belong[y]]+tag[belong[y]];
else s[i]+=tag[belong[y]];
}
b[belong[y]]=false;tag[belong[y]]=0;
max1[belong[y]]=-INF,min1[belong[y]]=INF;
for(int i=(belong[y]-1)*m+1;i<=min(n,belong[y]*m);i++)
{
max1[belong[y]]=max(max1[belong[y]],s[i]+tag[belong[y]]);
min1[belong[y]]=min(min1[belong[y]],s[i]+tag[belong[y]]);
}
}
return ;
}
LL slovequerysum(int x,int y)
{
ans=0;
for(int i=x;i<=min(belong[x]*m,y);i++)
{
if(!b[belong[x]]) ans+=s[i]+tag[belong[i]];
else ans+=bj[belong[i]]+tag[belong[i]];
}
for(int i=belong[x]+1;i<=belong[y]-1;i++) ans+=sum[i];
if(belong[x]!=belong[y])
{
for(int i=(belong[y]-1)*m+1;i<=y;i++)
{
if(!b[belong[y]]) ans+=s[i]+tag[belong[y]];
else ans+=bj[belong[y]]+tag[belong[y]];
}
}
return ans;
}
LL slovequerymax(int x,int y)
{
ans=-INF;
for(int i=x;i<=min(belong[x]*m,y);i++)
{
if(!b[belong[x]]) ans=max(ans,s[i]+tag[belong[i]]);
else ans=max(ans,bj[belong[i]]+tag[belong[i]]);
}
for(int i=belong[x]+1;i<=belong[y]-1;i++) ans=max(ans,max1[i]);
if(belong[x]!=belong[y])
{
for(int i=(belong[y]-1)*m+1;i<=y;i++)
{
if(!b[belong[y]]) ans=max(ans,s[i]+tag[belong[y]]);
else ans=max(ans,bj[belong[y]]+tag[belong[y]]);
}
}
return ans;
}
LL slovequerymin(int x,int y)
{
ans=INF;
for(int i=x;i<=min(belong[x]*m,y);i++)
{
if(!b[belong[x]]) ans=min(ans,s[i]+tag[belong[i]]);
else ans=min(ans,bj[belong[i]]+tag[belong[i]]);
}
for(int i=belong[x]+1;i<=belong[y]-1;i++) ans=min(ans,min1[i]);
if(belong[x]!=belong[y])
{
for(int i=(belong[y]-1)*m+1;i<=y;i++)
{
if(!b[belong[y]]) ans=min(ans,s[i]+tag[belong[y]]);
else ans=min(ans,bj[belong[y]]+tag[belong[y]]);
}
}
return ans;
}
int main()
{
int x,y,z;LL k;char ch[6];
n=read();q=read();
m=sqrt(n);
for(int i=1;i<=n;i++) belong[i]=(i-1)/m+1;
for(int i=1;i<=belong[n];i++) max1[i]=-INF,min1[i]=INF;
for(int i=1;i<=n;i++)
{
s[i]=read(),sum[belong[i]]+=s[i];
max1[belong[i]]=max(max1[belong[i]],s[i]);
min1[belong[i]]=min(min1[belong[i]],s[i]);
}
while(q--)
{
scanf("%s",ch);x=read(),y=read();
if(ch[0]=='a') k=read(),sloveadd(x,y,k);
else if(ch[1]=='e') k=read(),slovechange(x,y,k);
else if(ch[1]=='u') printf("%lld\n",slovequerysum(x,y));
else if(ch[1]=='a') printf("%lld\n",slovequerymax(x,y));
else if(ch[1]=='i') printf("%lld\n",slovequerymin(x,y));
}
return 0;
}
Codevs 4927 线段树练习5(分块)的更多相关文章
- codevs 1082 线段树练习 3 --分块练习
时间限制: 3 s 空间限制: 128000 KB 题目等级 : 大师 Master 题目描述 Description 给你N个数,有两种操作: 1:给区间[a,b]的所有数增加X 2:询问区间[ ...
- codevs 4927 线段树练习5
赶在期末考试之前把这道傻逼题调了出来. #include<iostream> #include<cstdio> #include<cstring> #include ...
- codevs 1082 线段树练习 3(区间维护)
codevs 1082 线段树练习 3 时间限制: 3 s 空间限制: 128000 KB 题目等级 : 大师 Master 题目描述 Description 给你N个数,有两种操作: 1:给区 ...
- codevs 1080 线段树点修改
先来介绍一下线段树. 线段树是一个把线段,或者说一个区间储存在二叉树中.如图所示的就是一棵线段树,它维护一个区间的和. 蓝色数字的是线段树的节点在数组中的位置,它表示的区间已经在图上标出,它的值就是这 ...
- codevs 1082 线段树区间求和
codevs 1082 线段树练习3 链接:http://codevs.cn/problem/1082/ sumv是维护求和的线段树,addv是标记这歌节点所在区间还需要加上的值. 我的线段树写法在运 ...
- 洛谷P4344 脑洞治疗仪 [SHOI2015] 线段树+二分答案/分块
!!!一道巨恶心的数据结构题,做完当场爆炸:) 首先,如果你用位运算的时候不小心<<打成>>了,你就可以像我一样陷入疯狂的死循环改半个小时 然后,如果你改出来之后忘记把陷入死循 ...
- codevs 1080 线段树练习 CDQ分治
codevs 1080 线段树练习 http://codevs.cn/problem/1080/ 时间限制: 1 s 空间限制: 128000 KB 题目描述 Description 一行N个 ...
- CODEVS.5037.线段树练习4加强版(分块 区间k的倍数)
题目链接 /* 如果用线段树,每个节点要再开k的空间,显然不行.但是分块可以(虽然空间依旧爆炸) 分块.用bloans[i][j]表示 第i块 模k为j 的有多少个 对于不是整块的,查询时应判断 A[ ...
- codevs 1080 线段树练习
链接:http://codevs.cn/problem/1080/ 先用树状数组水一发,再用线段树水一发 树状数组代码:84ms #include<cstdio> #include< ...
随机推荐
- Android—网络请求
import java.io.ByteArrayOutputStream; import java.io.InputStream; import java.net.HttpURLConnection; ...
- 怎样修改vim的缩进
默认vim的tab缩进是八个空格, 太长了, 需要改短一点. 第一步: 找到vimrc文件所在位置 # find / -name vimrc 第二步: 找到以后用vim打开vimrc文件并增加下面两行 ...
- 扩展 MongoDB.Driver 支持实体
针对MongoDB的官方C#驱动进行扩展 一.安装 Install-Package Apteryx.MongoDB.Driver.Extend 移步我的项目https://github.com/cod ...
- 基于【 建造者模式】一 || 网关zuul过滤器封装
一.springcloud的zuul网关拦截 1.黑名单拦截 2.参数验签 3.Api接口权限验证 二.网关拦截实现方式 1.继承ZuulFilter方法,实现业务逻辑 @Component @Slf ...
- VS2017 CMD多出 “进程 6420)已退出,返回代码为: 0”的内容
执行cmd, 命令行多出如下内容 xxxx\project.exe (进程 6420)已退出,返回代码为: 0. VS 取消设置方式: 工具->选项->调试-->常规 拉到最 ...
- 哈夫曼树详解——PHP代码实现
在介绍哈夫曼树之前需要先了解一些专业术语 路径和路径长度 在一棵树中,从一个结点往下可以达到的孩子或孙子结点之间的通路,称为路径.通路中分支的数目称为路径长度.若规定根结点的层数为1,则从根结点到第L ...
- rem em min-width: 30em 的意思
30em=30rem=30x16px=480px @media only screen and (min-width:30 em){ }
- input 被checked时和label配合的妙用
input 和label配合的妙用 1:作为文字隐藏与否的开关: 如下代码:对div里面所包含的文字较多,一开始只展示小部分,当用户点击按钮时,进行全部内容的展示(按钮是以向下隐藏箭头的图片) htm ...
- js数组实现上移下移
up(index) { if(index === 0) { return } //在上一项插入该项 this.list.splice(index - 1, 0, (this.list[index])) ...
- QGroupBox
QGroupBox窗口部件提供了一个有标题的组合框 组合框提供一个框架.一个标题和一个键盘快捷键,并且显示在它里面地其它不同窗口部件.标题在上面,键盘快捷键移动键盘焦点到组合框的一个子窗口部件,并且子 ...