有向网络(带权的有向图)的最短路径Dijkstra算法
什么是最短路径?
单源最短路径(所谓单源最短路径就是只指定一个顶点,最短路径是指其他顶点和这个顶点之间的路径的权值的最小值)
什么是最短路径问题?
给定一带权图,图中每条边的权值是非负的,代表着两顶点之间的距离。指定图中的一顶点为源点,找出源点到其它顶点的最短路径和其长度的问题,即是单源最短路径问题。
什么是Dijkstra算法?
求解单源最短路径问题的常用方法是Dijkstra(迪杰斯特拉)算法。该算法使用的是贪心策略:每次都找出剩余顶点中与源点距离最近的一个顶点。
算法思想
带权图G=<V,E>,令S为已确定了最短路径顶点的集合,则可用V-S表示剩余未确定最短路径顶点的集合。假设V0是源点,则初始 S={V0}。用数组Distance表示源点V0到其余顶点的路径长度,用数组pre[i]表示最短路径序列上顶点i的前一个顶点。初始时,pre[i]都是源点的下标。接下来需重复两个步骤:
- 从当前Distance[i]找出最小的一个,记录其下标v=i,源点V0到顶点Vv的最短路径即已确定,把Vv加入S。
- 更新源点到剩余顶点的最短路径长度。更新方法是:以上一步的顶点Vv为中间点,若Distance[v]+weight(v,i)<Distance[i],则修改值:pre[i]=v;Distance[i]=Distance[v]+weight(v,i);
重复以上两个步骤,直至所有顶点的最短路径都已找到。
需要指出,Dijkstra算法求解的不仅是有向图,无向图也是可以的。下面给出一个完整的有向带权图的实例:
下面举例:
有向带权图
Dijkstra算法的求解过程(规定INF是infinity无穷大的意思。)
基于邻接矩阵存储的有向网络的Dijkstra算法的简单实现:
const int infinity = ; //定义无穷常量,用1000表示 //定义图结构,采用邻接矩阵存储形式
template <int max_size>
class Graph
{
private:
/*邻接矩阵,对于有向网络(带权的有向图)其中存放的是权值*/
adjacent[max_size][max_size];
public:
void Dijkstra(int); //Dijkstra算法,求最短路径
}; //Dijkstra算法实现(基于邻接矩阵存储的带权有向图)
void Graph::Dijkstra(int vertex)
{
//注意:下标表示结点
int count = ; //用于记录访问过的结点数目,后面用于控制循环
bool find[max_size]; //用于标记已经找到最短路径的结点
int pre[max_size]; //用于存放当前结点的前驱结点的最短路径
int distance[max_size]; //用于存放当前结点的最短路径
//初始化
for(int i=;i<max_size;i++)
pre[i] = vertex; //开始所有结点的前驱结点都是开始的vertex
for(int i=;i<max_size;i++)
distance[i] = adjacent[vertex][i]; //邻接矩阵中存放的权值就是距离
for(int i=;i<max_size;i++)
find[i] = false; //初始化所有结点都没有找到最短路径
find[vertex] = true; int v = vertex; //用来迭代顶点的变量
int d; //用来表示距离
while(count < max_size)
{
d = infinity;
for(int i=;i<max_size;i++) //找到离最初结点最短路径的一个未访问到的结点
{
if(!find[i] && distance[i]<d)
{
d = diatance[i];
v = i;
}
}
find[v] = true;
//更新剩余的结点的前驱和最短距离
for(int i=;i<max_size;i++)
{
if(!find[i])
{
/*将上面找到的最短路径的结点作为起始点,
*连到其他未访问过的结点上,
*当比从最初结点到这个结点的路径短的时候,
*就将上个结点作为前驱结点,更新一下即可*/
d = distance[v] + adjacent[v][i];
if(d < distance[i])
{
pre[i] = v;
distance[i] = d;
}
}
}
count++;
} }
参考:http://blog.csdn.net/zhangxiangdavaid/article/details/38360337
有向网络(带权的有向图)的最短路径Dijkstra算法的更多相关文章
- 网络最短路径Dijkstra算法
最近在学习算法,看到有人写过的这样一个算法,我决定摘抄过来作为我的学习笔记: <span style="font-size:18px;">/* * File: shor ...
- 带权图的最短路径算法(Dijkstra)实现
一,介绍 本文实现带权图的最短路径算法.给定图中一个顶点,求解该顶点到图中所有其他顶点的最短路径 以及 最短路径的长度.在决定写这篇文章之前,在网上找了很多关于Dijkstra算法实现,但大部分是不带 ...
- 图论(四)------非负权有向图的单源最短路径问题,Dijkstra算法
Dijkstra算法解决了有向图G=(V,E)上带权的单源最短路径问题,但要求所有边的权值非负. Dijkstra算法是贪婪算法的一个很好的例子.设置一顶点集合S,从源点s到集合中的顶点的最终最短路径 ...
- HDU2255 奔小康赚小钱钱(二分图-最大带权匹配)
传说在遥远的地方有一个非常富裕的村落,有一天,村长决定进行制度改革:重新分配房子. 这可是一件大事,关系到人民的住房问题啊.村里共有n间房间,刚好有n家老百姓,考虑到每家都要有房住(如果有老百姓没房子 ...
- Dijkstra 算法——计算有权最短路径(边有权值)
[0]README 0.1) 本文总结于 数据结构与算法分析, 源代码均为原创, 旨在理解 Dijkstra 的思想并用源代码加以实现: 0.2)最短路径算法的基础知识,参见 http://blog. ...
- HIT 2739 - The Chinese Postman Problem - [带权有向图上的中国邮路问题][最小费用最大流]
题目链接:http://acm.hit.edu.cn/hoj/problem/view?id=2739 Time limit : 1 sec Memory limit : 64 M A Chinese ...
- [C++]多源最短路径(带权有向图):【Floyd算法(动态规划法)】 VS n*Dijkstra算法(贪心算法)
1 Floyd算法 1.1 解决问题/提出背景 多源最短路径(带权有向图中,求每一对顶点之间的最短路径) 方案一:弗洛伊德(Floyd算法)算法 算法思想:动态规划法 时间复杂度:O(n^3) 形式上 ...
- [算法] Dijkstra算法(带权有向图 最短路径算法)
一.带权有向图 二.算法原理 1)由于我们的节点是从1-6,所以我们创建的列表或数组都是n+1的长度,index=0的部分不使用,循环范围为1-6(方便计算). 2)循环之前,我们先初始化dis数组和 ...
- 洛谷OJ P1196 银河英雄传说(带权并查集)
题目描述 公元五八○一年,地球居民迁移至金牛座α第二行星,在那里发表银河联邦 创立宣言,同年改元为宇宙历元年,并开始向银河系深处拓展. 宇宙历七九九年,银河系的两大军事集团在巴米利恩星域爆发战争.泰山 ...
随机推荐
- .net core partial view的一些心得
原文:.net core partial view的一些心得 版权声明:本文为博主原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明. 本文链接:https://blog. ...
- 在CentOS部署AspNetCore网站
前段时间某云服务器大促,就买了一台打算折腾一下,买了几个月,却啥也没做,就改了个初始密码.最近快到双十一了,另一家厂商相同配置的服务器价格又便宜了一大截,看来又得剁手了.从今年开始,搜索一下云服务器, ...
- [Vuex系列] - Module的用法(终篇)
于使用单一状态树,应用的所有状态会集中到一个比较大的对象.当应用变得非常复杂时,store 对象就有可能变得相当臃肿.为了解决以上问题,Vuex 允许我们将 store 分割成模块(module).每 ...
- ASIHTTPRequest源码简单分析
1.前言 ASIHttprequest 是基于CFNetwork的,由于CFNetwork是比较底层的http库,功能比较少,因此,在ASIHttprequest中实现了http协议中比 ...
- C# 中 Linq 操作 DataTable
方法一:更简洁 Console.WriteLine(dt.Rows.OfType<DataRow>().First(x => x.Field<string>(" ...
- CSS 样式表{二}
1 选择器的优先级 选择器的优先主要考虑选择器的权重 可以将各种选择器的权重以数值来表示,数值越大,优先级越高 选择器 权重值 标签selector 1 类选择器 10 ID选择器 100 行内样式 ...
- 【leetcode】339. Nested List Weight Sum
原题 Given a nested list of integers, return the sum of all integers in the list weighted by their dep ...
- 解决在Linux操作系统下无法连接MySQL服务端的问题
遇到这种问题的时候我们需要考虑的是防火墙规则,因为防火墙默认是禁止所有端口访问的,所以我们需要添加一个访问端口来连接MySQL. 命令如下: 允许某端口 firewall-cmd --zone= ...
- Linux学习笔记(六)Linux常用命令:关机、重启以及系统运行级别
一.shutdown命令 shutdown [选项] [时间] 常用选项 -c 取消前一个关机命令 -h 关机 -r 重启 shutdown命令关机或重启会保存当前系统正在使用的资源,因此关机或重启最 ...
- 虚拟机配置双网卡适配器后(桥接和NAT模式),重新打开后两个适配器的ip都没有了(重启网卡报Job for network.service failed because the control process exited with error code)
科普双网卡适配器的好处: 我是配了一个桥接模式的网卡和一个NAT模式的网卡,桥接模式,也就是将虚拟机的虚拟网络适配器与主机的物理网络适配器进行交接,虚拟机中的虚拟网络适配器可通过主机中的物理网络适配器 ...