之前的[笔记] 基于nvidia/cuda的深度学习基础镜像构建流程已经Out了,以这篇为准。

基于NVidia官方的nvidia/cuda image,构建适用于Deep Learning的基础image。

思路就是先把常用的东西都塞进去,build成image,此后使用时想装哪个框架就装。

为了体验重装系统的乐趣,所以采用慢慢来比较快的步骤,而不是通过Dockerfile来build。

环境信息

已经安装了Docker CENVIDIA Container Toolkit,具体流程参考这里

Host OS: Ubuntu 18.04 64 bit

CUDA: 10.0

cuDNN: 7.4

Docker CE: 19.03.0

镜像信息

可以在nvidia/cuda查看提供的镜像列表,不同tag的区别是:

  • base: 基于CUDA,包含最精简的依赖,用于部署预编译的CUDA应用,需要手工安装所需的其他依赖。
  • runtime: 基于base,添加了CUDA toolkit共享的库
  • devel: 基于runtime,添加了编译工具链,调试工具,头文件,静态库。用于从源码编译CUDA应用。

为了省事,这里选择nvidia/cuda:10.0-cudnn7-devel

$ sudo docker pull nvidia/cuda:10.0-cudnn7-devel

目前拉取到的镜像信息如下:

OS: Ubuntu 18.04.2 LTS

Size: 3.09 GB

启动镜像

创建目录base,方便数据导入导出,映射为容器内的/host目录,然后在这个目录下运行命令创建容器dl-base

$ sudo docker run -it --gpus all -P --name dl-base -v `pwd`:/host nvidia/cuda:10.0-cudnn7-devel

一切顺利的话,出现类似下面的命令行:

root@d6421dac4cec:/#

可以运行nvidia-smi验证容器内的CUDA环境正常。

替换阿里源

大陆的网络环境下,阿里源速度还不错。

将下面的内容存为base目录下的sources.list文件。

deb http://mirrors.aliyun.com/ubuntu/ bionic main restricted
deb http://mirrors.aliyun.com/ubuntu/ bionic-updates main restricted
deb http://mirrors.aliyun.com/ubuntu/ bionic universe
deb http://mirrors.aliyun.com/ubuntu/ bionic-updates universe
deb http://mirrors.aliyun.com/ubuntu/ bionic multiverse
deb http://mirrors.aliyun.com/ubuntu/ bionic-updates multiverse
deb http://mirrors.aliyun.com/ubuntu/ bionic-backports main restricted universe multiverse
deb http://mirrors.aliyun.com/ubuntu/ bionic-security main restricted
deb http://mirrors.aliyun.com/ubuntu/ bionic-security universe
deb http://mirrors.aliyun.com/ubuntu/ bionic-security multiverse

在容器命令行下运行命令更新源。

$ cp /host/sources.list /etc/apt/sources.list
$ apt update

安装基本工具

$ apt install -y vim curl git iputils-ping net-tools telnet tmux unzip

创建工作及下载目录

$ mkdir -p /work/download

修改~/.bashrc

在文件尾部添加下面内容:

alias u='cd ..'
alias ins='apt install -y'
alias ta='tmux a -t'
alias jn='jupyter notebook --ip=0.0.0.0 --allow-root'

再使其生效:

$ source ~/.bashrc

安装openssh-server

$ apt install -y openssh-server

修改/etc/ssh/sshd_config,找到#PermitRootLogin开头的这一行,修改为PermitRootLogin yes,这样就可以通过root登录了。

然后修改密码:

$ passwd

两次输入密码,然后重启ssh:

$ /etc/init.d/ssh restart

出现下面内容就OK了。

 * Restarting OpenBSD Secure Shell server sshd [ OK ]

这里为了简单粗暴,采用了root来登陆。

如果考虑安全,可自行创建用户,并对ssh进行配置。

安装miniconda

也可按需安装anaconda等python包,这里以miniconda为例。

$ wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh
$ sh Miniconda3-latest-Linux-x86_64.sh

安装时问是否初始化,选择yes:

Do you wish the installer to initialize Miniconda3 by running conda init? [yes|no]

再使其生效:

$ source ~/.bashrc

配置pip源为阿里源:

$ pip config set global.index-url https://mirrors.aliyun.com/pypi/simple

配置conda源为清华源:

$ conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
$ conda config --set show_channel_urls yes

安装常用的包:

$ conda install jupyter numpy matplotlib Pillow scipy pandas opencv

这里安装的opencv是3.4.2

保存镜像

至此,就可以在Host下运行命令将容器保存为镜像了。

$ sudo docker commit dl-base dl/base

这样就生成了一个镜像dl/base,大小为6.51GB。

在此镜像基础上,可以自行安装不同的框架。

jupyter notebook

如果希望在容器中启动jupyter notebook,需要加上参数如下:

$ jupyter notebook --ip=0.0.0.0 --allow-root

这个已经加入alias了。

[笔记] 基于nvidia/cuda的深度学习基础镜像构建流程 V0.2的更多相关文章

  1. [笔记] 基于nvidia/cuda的深度学习基础镜像构建流程

    基于NVidia开源的nvidia/cuda image,构建适用于DeepLearning的基础image. 思路就是先把常用的东西都塞进去,再装某个框架就省事儿了. 为了体验重装系统的乐趣,所以采 ...

  2. 基于NVIDIA GPUs的深度学习训练新优化

    基于NVIDIA GPUs的深度学习训练新优化 New Optimizations To Accelerate Deep Learning Training on NVIDIA GPUs 不同行业采用 ...

  3. vitess基础镜像构建流程Centos

    以下列出了构建vitess使用的Centos镜像的简单流程,由于较早基础版本是Centos7.2的,重新构建可以基于最新的Centos版本构建 1.基础镜像拉取 #拉取官方版本 docker pull ...

  4. NVIDIA GPUs上深度学习推荐模型的优化

    NVIDIA GPUs上深度学习推荐模型的优化 Optimizing the Deep Learning Recommendation Model on NVIDIA GPUs 推荐系统帮助人在成倍增 ...

  5. CUDA上深度学习模型量化的自动化优化

    CUDA上深度学习模型量化的自动化优化 深度学习已成功应用于各种任务.在诸如自动驾驶汽车推理之类的实时场景中,模型的推理速度至关重要.网络量化是加速深度学习模型的有效方法.在量化模型中,数据和模型参数 ...

  6. NVIDIA TensorRT高性能深度学习推理

    NVIDIA TensorRT高性能深度学习推理 NVIDIA TensorRT 是用于高性能深度学习推理的 SDK.此 SDK 包含深度学习推理优化器和运行时环境,可为深度学习推理应用提供低延迟和高 ...

  7. 算法工程师<深度学习基础>

    <深度学习基础> 卷积神经网络,循环神经网络,LSTM与GRU,梯度消失与梯度爆炸,激活函数,防止过拟合的方法,dropout,batch normalization,各类经典的网络结构, ...

  8. 大数据下基于Tensorflow框架的深度学习示例教程

    近几年,信息时代的快速发展产生了海量数据,诞生了无数前沿的大数据技术与应用.在当今大数据时代的产业界,商业决策日益基于数据的分析作出.当数据膨胀到一定规模时,基于机器学习对海量复杂数据的分析更能产生较 ...

  9. 机器学习&深度学习基础(目录)

    从业这么久了,做了很多项目,一直对机器学习的基础课程鄙视已久,现在回头看来,系统的基础知识整理对我现在思路的整理很有利,写完这个基础篇,开始把AI+cv的也总结完,然后把这么多年做的项目再写好总结. ...

随机推荐

  1. css 模块化

    什么是css模块化思想?(what) 为了理解css模块化思想,我们首先了解下,什么是模块化,在百度百科上的解释是,在系统的结构中,模块是可组合.分解和更换的单元.模块化是一种处理复杂系统分解成为更好 ...

  2. javac & java

    # 没有 package, 没有 import 的情况 * 源文件 public class HelloWorld{ public static void main(String[] args){ S ...

  3. 关于boost::asio

    // BoostServer.cpp : 定义控制台应用程序的入口点. // #include "stdafx.h" #include <iostream> #incl ...

  4. crc32 cpp Makefile可参考

    https://github.com/stbrumme/crc32 # simple Makefile CPP = g++ # files PROGRAM = Crc32Test LIBS = -lr ...

  5. 部署nginx脚本

    cd nginx-1.12.2useradd -s /sbin/nologin nginx./configuremakemake installyum -y install mariadb maria ...

  6. UICollectionView中的cell 左对齐

    项目中使用UICollectionView做布局,会发现当某个section只有一个cell的时候cell会居中显示,而项目中都是居左显示,这就需要对UICollectionView的布局做些处理,首 ...

  7. 11步教你选择最稳定的MySQL版本

    11步教你选择最稳定的MySQL版本 来源:CSDN 作者:网络 发表于:2012-07-18 08:36 点击: MySQL开源数据库有多个重要分支,目前拥有的分支分别为:MySQL Cluster ...

  8. WCF概述

    Tips:概念性的东西仅助理解,可以略过 概述 1.SOA概述 1).从三个问题开始 SOA是什么——面向服务架构.一种编程模式.一种架构模式.它将应用程序分成不同功能(服务)单元,再通过服务之间的接 ...

  9. Harmonic Number (LightOJ 1234)(调和级数 或者 区块储存答案)

    题解:隔一段数字存一个答案,在查询时,只要找到距离n最近而且小于n的存答案值,再把剩余的暴力跑一遍就可以. #include <bits/stdc++.h> using namespace ...

  10. 简单快捷的方式从vps下载文件

    安装setuptools 1) 最简单安装,假定在ubuntu下 sudo apt-get install python-setuptools SimpleHTTPServer 是单线程的临时服务,建 ...