【数位贪心】loj#530. 「LibreOJ β Round #5」最小倍数
记录一下题解里写的算法四
题目描述
$1 \le T \le 10^4,1\le m\le 100,0\le a_i\le 10^{18}$.
题目分析
题解里的算法四是这么写的
主要是这个$\alpha_i = \sum_{k = 1}^{\infty}{\left \lfloor \frac{N}{\mathrm{pr}_i^k} \right \rfloor}$的计算在蛮多地方有看到应用,所以这里记一下对算法四的理解。
题目给了$m$个$e_i$的限制,要求满足$\alpha_i \ge e_i$.首先由于这$m$个限制之间互相并不影响,所以答案$N=\max\{N_i\}$,其中$N_i$表示最小的满足第$i$个限制的数。这样只需要来考虑如下问题:
给定$\alpha,e,质数p$,求最小的$N$满足$\sum_{k = 1}^{\infty}{\left \lfloor \frac{N}{\mathrm{p}^k} \right \rfloor}=e$.
比较常见的套路是把$N$按$p$进制拆分成$(x_1 x_2 \cdots x_m)_{p}$。接下去考虑一个从右往左第$k+1$位$v \cdot \mathrm{p}^k$对$e$的贡献,由于它会在$k=1\cdots \mathrm{p}^k$时被计入,所以是$(v v \cdots v)_{\mathrm{p}}$(k个v).注意到这相当于是一个类似进制拆分的过程,那么就可以从高位到低位贪心地计算$N_i$。
#include<bits/stdc++.h>
typedef long long ll;
typedef unsigned long long ull; int T;
bool vis[];
ll m,pr[],ans; ll read()
{
char ch = getchar();
ll num = , fl = ;
for (; !isdigit(ch); ch=getchar())
if (ch=='-') fl = -;
for (; isdigit(ch); ch=getchar())
num = (num<<)+(num<<)+ch-;
return num*fl;
}
void makePrime()
{
for (int i=; i<=; i++)
{
if (!vis[i]) pr[++pr[]] = i;
if (pr[]==) break;
for (int j=; j*i<=; j++)
vis[i*j] = true;
}
}
void write(ll x){if (x/) write(x/);putchar(x%+'');}
int main()
{
makePrime();
for (T=read(); T; --T)
{
m = read(), ans = ;
for (int i=; i<=m; i++)
{
ll e = read(), cnt = , base = , val = pr[i], p = pr[i];
while (base*p+ <= e)
base = base*p+, val *= p;
for (; base; base/=p,val/=p)
cnt += val*(e/base), e -= base*(e/base);
ans = std::max(ans, cnt);
}
write(ans), putchar('\n');
}
return ;
}
END
【数位贪心】loj#530. 「LibreOJ β Round #5」最小倍数的更多相关文章
- [LOJ#530]「LibreOJ β Round #5」最小倍数
[LOJ#530]「LibreOJ β Round #5」最小倍数 试题描述 第二天,LCR 终于启动了备份存储器,准备上传数据时,却没有找到熟悉的文件资源,取而代之的是而屏幕上显示的一段话: 您的文 ...
- [LOJ#515]「LibreOJ β Round #2」贪心只能过样例
[LOJ#515]「LibreOJ β Round #2」贪心只能过样例 试题描述 一共有 \(n\) 个数,第 \(i\) 个数 \(x_i\) 可以取 \([a_i , b_i]\) 中任意值. ...
- [LOJ#531]「LibreOJ β Round #5」游戏
[LOJ#531]「LibreOJ β Round #5」游戏 试题描述 LCR 三分钟就解决了问题,她自信地输入了结果-- > -- 正在检查程序 -- > -- 检查通过,正在评估智商 ...
- [LOJ#516]「LibreOJ β Round #2」DP 一般看规律
[LOJ#516]「LibreOJ β Round #2」DP 一般看规律 试题描述 给定一个长度为 \(n\) 的序列 \(a\),一共有 \(m\) 个操作. 每次操作的内容为:给定 \(x,y\ ...
- [LOJ#525]「LibreOJ β Round #4」多项式
[LOJ#525]「LibreOJ β Round #4」多项式 试题描述 给定一个正整数 k,你需要寻找一个系数均为 0 到 k−1 之间的非零多项式 f(x),满足对于任意整数 x 均有 f(x) ...
- [LOJ#526]「LibreOJ β Round #4」子集
[LOJ#526]「LibreOJ β Round #4」子集 试题描述 qmqmqm有一个长为 n 的数列 a1,a2,……,an,你需要选择集合{1,2,……,n}的一个子集,使得这个子集中任意两 ...
- [LOJ#522]「LibreOJ β Round #3」绯色 IOI(危机)
[LOJ#522]「LibreOJ β Round #3」绯色 IOI(危机) 试题描述 IOI 的比赛开始了.Jsp 和 Rlc 坐在一个角落,这时他们听到了一个异样的声音 …… 接着他们发现自己收 ...
- loj #547. 「LibreOJ β Round #7」匹配字符串
#547. 「LibreOJ β Round #7」匹配字符串 题目描述 对于一个 01 串(即由字符 0 和 1 组成的字符串)sss,我们称 sss 合法,当且仅当串 sss 的任意一个长度为 ...
- loj #535. 「LibreOJ Round #6」花火 树状数组求逆序对+主席树二维数点+整体二分
$ \color{#0066ff}{ 题目描述 }$ 「Hanabi, hanabi--」 一听说祭典上没有烟火,Karen 一脸沮丧. 「有的哦-- 虽然比不上大型烟花就是了.」 还好 Shinob ...
随机推荐
- 最新 光环新网java校招面经 (含整理过的面试题大全)
从6月到10月,经过4个月努力和坚持,自己有幸拿到了网易雷火.京东.去哪儿.优刻得等10家互联网公司的校招Offer,因为某些自身原因最终选择了优刻得.6.7月主要是做系统复习.项目复盘.LeetCo ...
- js穿梭框;将两个table中的数据选中移动
将table中选中的数据移动到右边: 点击一行中的任意一个位置,使其选中: 注:attr()和prop()都是jquery的方法: .attr() : 获取匹配的元素集合中的第一个元素的属性的值 或 ...
- javaweb关于用户是否登录全局判断,没有登录跳转到登录界面
有这样一个需求,用户密码登录网站,在session中保留了用户的信息,但是用户很长时间没有再操作该界面,用户的session则被浏览器清除,而一些业务逻辑则是需要用到用户的信息,那么用户再执行操作后, ...
- cdoj 574 High-level ancients dfs序+线段树 每个点所加权值不同
High-level ancients Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://acm.uestc.edu.cn/#/problem/s ...
- Docker 镜像的制作
1.登录docker docker ecex –it 容器名/容器id /bin/bash 例如: docker exec –it t ...
- Java手写简单Linkedlist一(包括增加,插入,查找,toString,remove功能)
@Java300 学习总结 一.自定义节点 LinkList底层为双向链表.特点为查询效率低,但增删效率高,线程不安全. 链表数据储存在节点,且每个节点有指向上个和下个节点的指针. 创建ggLinke ...
- 6-MySQL DBA笔记-查询优化
第6章 查询优化 查询优化是研发人员比较关注也是疑问较多的领域.本章首先为读者介绍常用的优化策略.MySQL的优化器.连接机制,然后介绍各种语句的优化,在阅读本章之前,需要先对EXPLAIN命令,索引 ...
- .js文件中文乱码解决办法
描述:.js文件里的中文内容在网页中显示乱码 解决办法:把JS文件的编码改为utf-8 VS2013解决步骤:文件——高级保存选项——Unicode (UTF-8带签名) 代码页 65001
- MySQL去除查询结果重复值
下面先来看看例子: table id name 1 a 2 b 3 c 4 c 5 b 库结构大概这样,这只是一个简单的例子,实际情况会复杂得多. 比如我想用一条语句查询得到name不重复 ...
- 弹性盒模型display:flex
Flex布局意为"弹性布局",用来为盒模型提供更多灵活性.此外,Flex定义的容器可以对块级元素(display: flex;)或行内元素(display: inline-flex ...