scikit-learn机器学习(四)使用决策树做分类
我们使用决策树来创建一个能屏蔽网页横幅广告的软件。
已知图片的数据判断它属于广告还是文章内容。
数据来自 http://archive.ics.uci.edu/ml/datasets/Internet+Advertisements
其中包含3279张图片的数据,该数据集中的类的比例是不均衡的,459张图片是广告,零位2820张图片是文章内容。
首先导入数据,数据预处理
# -*- coding: utf-8 -*-
import pandas as pd
from sklearn.tree import DecisionTreeClassifier
from sklearn.model_selection import train_test_split
from sklearn.metrics import classification_report
from sklearn.pipeline import Pipeline
from sklearn.model_selection import GridSearchCV df = pd.read_csv('ad-dataset/ad.data',header=None) variable_col = set(df.columns.values) #共有几列
variable_col.remove(len(df.columns.values)-1) #最后一列是标签
label_col= df[len(df.columns.values)-1] #把标签列取出来 y = [1 if e=='ad.' else 0 for e in label_col] #把标签转为数值
X = df[list(variable_col)].copy() #把前面的所有列作为X
X.replace(to_replace=' *?',value=-1,regex=True,inplace=True) #数据中的缺失值是 *?,我们用-1替换缺失值
X_train,X_test,y_train,y_test = train_test_split(X,y)
建立决策树,网格搜索微调模型
# In[1] 网格搜索微调模型
pipeline = Pipeline([
('clf',DecisionTreeClassifier(criterion='entropy'))
])
parameters={
'clf__max_depth':(150,155,160),
'clf__min_samples_split':(2,3),
'clf__min_samples_leaf':(1,2,3)
}
#GridSearchCV 用于系统地遍历多种参数组合,通过交叉验证确定最佳效果参数。
grid_search = GridSearchCV(pipeline,parameters,n_jobs=-1,verbose=-1,scoring='f1')
grid_search.fit(X_train,y_train) # 获取搜索到的最优参数
best_parameters = grid_search.best_estimator_.get_params()
print("最好的F1值为:",grid_search.best_score_)
print('最好的参数为:')
for param_name in sorted(parameters.keys()):
print('t%s: %r' % (param_name,best_parameters[param_name]))
最好的F1值为: 0.8753026365252053
最好的参数为:
tclf__max_depth: 160
tclf__min_samples_leaf: 1
tclf__min_samples_split: 3
评价模型
# In[2] 输出预测结果并评价
predictions = grid_search.predict(X_test)
print(classification_report(y_test,predictions))
precision recall f1-score support 0 0.98 0.99 0.98 695
1 0.93 0.89 0.91 125 micro avg 0.97 0.97 0.97 820
macro avg 0.95 0.94 0.94 820
weighted avg 0.97 0.97 0.97 820
scikit-learn机器学习(四)使用决策树做分类的更多相关文章
- scikit-learn机器学习(四)使用决策树做分类,并画出决策树,随机森林对比
数据来自 UCI 数据集 匹马印第安人糖尿病数据集 载入数据 # -*- coding: utf-8 -*- import pandas as pd import matplotlib matplot ...
- (原创)(四)机器学习笔记之Scikit Learn的Logistic回归初探
目录 5.3 使用LogisticRegressionCV进行正则化的 Logistic Regression 参数调优 一.Scikit Learn中有关logistics回归函数的介绍 1. 交叉 ...
- Scikit Learn: 在python中机器学习
转自:http://my.oschina.net/u/175377/blog/84420#OSC_h2_23 Scikit Learn: 在python中机器学习 Warning 警告:有些没能理解的 ...
- scikit learn 模块 调参 pipeline+girdsearch 数据举例:文档分类 (python代码)
scikit learn 模块 调参 pipeline+girdsearch 数据举例:文档分类数据集 fetch_20newsgroups #-*- coding: UTF-8 -*- import ...
- (原创)(三)机器学习笔记之Scikit Learn的线性回归模型初探
一.Scikit Learn中使用estimator三部曲 1. 构造estimator 2. 训练模型:fit 3. 利用模型进行预测:predict 二.模型评价 模型训练好后,度量模型拟合效果的 ...
- Python机器学习笔记 使用sklearn做特征工程和数据挖掘
特征处理是特征工程的核心部分,特征工程是数据分析中最耗时间和精力的一部分工作,它不像算法和模型那样式确定的步骤,更多的是工程上的经验和权衡,因此没有统一的方法,但是sklearn提供了较为完整的特征处 ...
- 基于机器学习和TFIDF的情感分类算法,详解自然语言处理
摘要:这篇文章将详细讲解自然语言处理过程,基于机器学习和TFIDF的情感分类算法,并进行了各种分类算法(SVM.RF.LR.Boosting)对比 本文分享自华为云社区<[Python人工智能] ...
- javascript实现朴素贝叶斯分类与决策树ID3分类
今年毕业时的毕设是有关大数据及机器学习的题目.因为那个时间已经步入前端的行业自然选择使用JavaScript来实现其中具体的算法.虽然JavaScript不是做大数据处理的最佳语言,相比还没有优势,但 ...
- CART决策树(分类回归树)分析及应用建模
一.CART决策树模型概述(Classification And Regression Trees) 决策树是使用类似于一棵树的结构来表示类的划分,树的构建可以看成是变量(属性)选择的过程,内部节 ...
随机推荐
- springboot集成Apollo分布式配置
安装Apollo服务 1.安装mysql 地址:https://www.cnblogs.com/xuaa/p/10782352.html 2.下载Apollo源码到本地 地址:https://gith ...
- asp.netMVC中使用aop进行关注点分离
资源地址:https://stackoverflow.com/questions/23244400/aspect-oriented-programming-in-asp-net-mvc 从页面复制过来 ...
- bp算法推导过程
参考:张玉宏<深度学习之美:AI时代的数据处理与最佳实践>265-271页
- JDK源码那些事儿之红黑树基础下篇
说到HashMap,就一定要说到红黑树,红黑树作为一种自平衡二叉查找树,是一种用途较广的数据结构,在jdk1.8中使用红黑树提升HashMap的性能,今天就来说一说红黑树,上一讲已经给出插入平衡的调整 ...
- 正则的lastIndex 属性
简介:正则的lastIndex 属性用于规定下次匹配的起始位置. 注意: 该属性只有设置标志 g 才能使用. 上次匹配的结果是由方法 RegExp.exec() 和 RegExp.test() 找到的 ...
- Vue -- element-ui el-table 点击tr项页面跳转,返回后缓存回显点击项
页面跳转反显(点击项,点击table滚动的位置,搜索条件,分页回显) 点击table tr项后,页面跳转到下级页面,返回回显搜索条件.当前页码.并将点击项select选中.滚动条也被记录回显跳转时滚动 ...
- Java8-Synchronized-No.02
import java.util.concurrent.ExecutorService; import java.util.concurrent.Executors; import java.util ...
- for迭代多个对象
1.传统方法 from random import randint chinese = [randint(60, 100) for _ in range(40)] math = [randint(60 ...
- bzoj 5072
对于某一大小的连通子图包含的黑点的数目的最大值和最小值都能取到考虑树形dp$f[i][j]$ 表示从 $i$ 的子树中选出大小为 $j$ 的联通子图黑点数目的最小值$g[i][j]$ 表示从 $i$ ...
- Hihocoder #1333 : 平衡树·Splay2
1333 : 平衡树·Splay2 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 小Ho:好麻烦啊~ 小Hi:小Ho你在干嘛呢? 小Ho:我在干活啊!前几天老师让我帮忙 ...