[BJOI2019]光线——递推
题目链接:
设$F_{i}$表示从第$1$面玻璃上面向下射入一单位光线,穿过前$i$面玻璃的透光率。
设$G_{i}$表示从第$i$面玻璃下面向上射入一单位光线,穿过前$i$面玻璃的反光率。
那么可以推出:
$F_{i}=F_{i-1}a_{i}\sum\limits_{k=0}^{+\infty}(G_{i-1}b_{i})^k$
$G_{i}=b_{i}+G_{i-1}a_{i}^2\sum\limits_{k=0}^{+\infty}(G_{i-1}b_{i})^k$
后面那部分显然是个等比数列,因为$x<1$,所以$\sum\limits_{k=0}^{+\infty}x^k=\frac{1}{1-x}$。
最后的递推式为:
$F_{i}=\frac{F_{i-1}a_{i}}{1-G_{i-1}b_{i}}$
$G_{i}=b_{i}+\frac{G_{i-1}a_{i}^2}{1-G_{i-1}b_{i}}$
直接递推即可。
#include<set>
#include<map>
#include<queue>
#include<stack>
#include<cmath>
#include<cstdio>
#include<vector>
#include<bitset>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
const int mod=1000000007;
int n,inv;
int a,b;
int F,G;
int quick(int x,int y)
{
int res=1;
while(y)
{
if(y&1)
{
res=1ll*x*res%mod;
}
y>>=1;
x=1ll*x*x%mod;
}
return res;
}
int main()
{
scanf("%d",&n);
inv=quick(100,mod-2);
F=1;
for(int i=1;i<=n;i++)
{
scanf("%d%d",&a,&b);
a=1ll*a*inv%mod,b=1ll*b*inv%mod;
int res=quick((1-1ll*G*b%mod+mod)%mod,mod-2);
F=1ll*F*a%mod*res%mod;
G=(b+1ll*a*a%mod*G%mod*res%mod)%mod;
}
printf("%d",F);
}
[BJOI2019]光线——递推的更多相关文章
- [BJOI2019]光线[递推]
题意 题目链接 分析 令 \(f_i\) 表示光线第一次从第一块玻璃射出第 \(i\) 块玻璃的比率. 令 \(g_i\) 表示光线射回第 \(i\) 块玻璃,再射出第 \(i\) 块玻璃的比率. 容 ...
- [BJOI2019]光线(递推)
[BJOI2019]光线(递推) 题面 洛谷 题解 假装玻璃可以合并,假设前面若干玻璃的透光率是\(A\),从最底下射进去的反光率是\(B\),当前的玻璃的透光率和反光率是\(a,b\). 那么可以得 ...
- LOJ#3093. 「BJOI2019」光线(递推+概率期望)
题面 传送门 题解 把\(a_i\)和\(b_i\)都变成小数的形式,记\(f_i\)表示\(1\)单位的光打到第\(i\)个玻璃上,能从第\(n\)个玻璃下面出来的光有多少,记\(g_i\)表示能从 ...
- luogu P5323 [BJOI2019]光线
传送门 先考虑\(n=1\)的情况不是输入数据都告诉你了吗 然后考虑\(n=2\),可以光线是在弹来弹去的废话,然后射出去的光线是个等比数列求和的形式,也就是\(x_1\sum_{i=1}^{\inf ...
- [BJOI2019] 光线
看起来很麻烦,做起来并不难的题 以下设:$a_i=\frac{a_i}{100},b_i=\frac{b_i}{100}$ 显然,如果$b_i=0$的话,直接求$\Pi a_i$就是答案. 解决反射问 ...
- 【BZOJ-2476】战场的数目 矩阵乘法 + 递推
2476: 战场的数目 Time Limit: 1 Sec Memory Limit: 128 MBSubmit: 58 Solved: 38[Submit][Status][Discuss] D ...
- 从一道NOI练习题说递推和递归
一.递推: 所谓递推,简单理解就是推导数列的通项公式.先举一个简单的例子(另一个NOI练习题,但不是这次要解的问题): 楼梯有n(100 > n > 0)阶台阶,上楼时可以一步上1阶,也可 ...
- Flags-Ural1225简单递推
Time limit: 1.0 second Memory limit: 64 MB On the Day of the Flag of Russia a shop-owner decided to ...
- 利用Cayley-Hamilton theorem 优化矩阵线性递推
平时有关线性递推的题,很多都可以利用矩阵乘法来解决. 时间复杂度一般是O(K3logn)因此对矩阵的规模限制比较大. 下面介绍一种利用利用Cayley-Hamilton theorem加速矩阵乘法的方 ...
随机推荐
- 数据格式转换string.Format
1.格式化货币(跟系统的环境有关,中文系统默认格式化人民币,英文系统格式化美元) string.Format("{0:C}",0.2) 结果为:¥0.20 (英文操作系统结果:$0 ...
- opencv-02--图像的邻域操作
图像的邻域操作 很多时候,我们对图像处理时,要考虑它的邻域,比如3*3是我们常用的,这在图像滤波.去噪中最为常见,下面我们介绍如果在一次图像遍历过程中进行邻域的运算. 下面我们进行一个简单的滤波操作, ...
- Django rest-framework框架-组件之分页
分页: a. 分页,看第n页, 每页显示n条数据 from rest_framework import serializers from api import models from rest_fra ...
- Keras 笔记
1. 从 meta 模型恢复graph, 修改node 并保存 from __future__ import absolute_import from __future__ import div ...
- 一个简单的window.onscroll实例
鉴于better-scroll实现这个效果很复杂,想用最原生的效果来实现吸顶效果 一个简单的window.onscroll实例,可以应用于移动端 demo 一个简单的window.onscroll实例 ...
- SQL将同样标识的查询结果查重并用逗号拼接
SELECT B.TaskID , LEFT(SamList, LEN(SamList) - 1) AS ResultListFROM ( SELECT TaskID , ( SELECT Sampl ...
- 使用jMeter对基于SAP ID service进行Authentication的Restful API进行并发测试
这篇文章本来Jerry只在SAP社区上写了英文版的,可以通过点击文末的"阅读原文"获得.后来有两位做Marketing Cloud开发的德国同事,写邮件询问关于文章的更多细节,声称 ...
- RabbitMQ的基本概念
1:基本概念 ConnectionFactory(连接工厂): 生产Connection的的工厂 Connection(连接):是RabbitMQ的socket的长链接,它封装了socket协议相关部 ...
- 第二章 Django之Django安装(2)
Django 安装 1.官方发布版安装 大多数人会考虑从 http://www.djangoproject.com/download/ 下载安装最新的官方 发布版.Django 使用了 Python ...
- 【2017-11-26】Linq表连接查询
class Program { static void Main(string[] args) { //Linq创建的数据库上下文对象db DataClasses2DataContext db = n ...