[BJOI2019]光线——递推
题目链接:
设$F_{i}$表示从第$1$面玻璃上面向下射入一单位光线,穿过前$i$面玻璃的透光率。
设$G_{i}$表示从第$i$面玻璃下面向上射入一单位光线,穿过前$i$面玻璃的反光率。
那么可以推出:
$F_{i}=F_{i-1}a_{i}\sum\limits_{k=0}^{+\infty}(G_{i-1}b_{i})^k$
$G_{i}=b_{i}+G_{i-1}a_{i}^2\sum\limits_{k=0}^{+\infty}(G_{i-1}b_{i})^k$
后面那部分显然是个等比数列,因为$x<1$,所以$\sum\limits_{k=0}^{+\infty}x^k=\frac{1}{1-x}$。
最后的递推式为:
$F_{i}=\frac{F_{i-1}a_{i}}{1-G_{i-1}b_{i}}$
$G_{i}=b_{i}+\frac{G_{i-1}a_{i}^2}{1-G_{i-1}b_{i}}$
直接递推即可。
#include<set>
#include<map>
#include<queue>
#include<stack>
#include<cmath>
#include<cstdio>
#include<vector>
#include<bitset>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
const int mod=1000000007;
int n,inv;
int a,b;
int F,G;
int quick(int x,int y)
{
int res=1;
while(y)
{
if(y&1)
{
res=1ll*x*res%mod;
}
y>>=1;
x=1ll*x*x%mod;
}
return res;
}
int main()
{
scanf("%d",&n);
inv=quick(100,mod-2);
F=1;
for(int i=1;i<=n;i++)
{
scanf("%d%d",&a,&b);
a=1ll*a*inv%mod,b=1ll*b*inv%mod;
int res=quick((1-1ll*G*b%mod+mod)%mod,mod-2);
F=1ll*F*a%mod*res%mod;
G=(b+1ll*a*a%mod*G%mod*res%mod)%mod;
}
printf("%d",F);
}
[BJOI2019]光线——递推的更多相关文章
- [BJOI2019]光线[递推]
题意 题目链接 分析 令 \(f_i\) 表示光线第一次从第一块玻璃射出第 \(i\) 块玻璃的比率. 令 \(g_i\) 表示光线射回第 \(i\) 块玻璃,再射出第 \(i\) 块玻璃的比率. 容 ...
- [BJOI2019]光线(递推)
[BJOI2019]光线(递推) 题面 洛谷 题解 假装玻璃可以合并,假设前面若干玻璃的透光率是\(A\),从最底下射进去的反光率是\(B\),当前的玻璃的透光率和反光率是\(a,b\). 那么可以得 ...
- LOJ#3093. 「BJOI2019」光线(递推+概率期望)
题面 传送门 题解 把\(a_i\)和\(b_i\)都变成小数的形式,记\(f_i\)表示\(1\)单位的光打到第\(i\)个玻璃上,能从第\(n\)个玻璃下面出来的光有多少,记\(g_i\)表示能从 ...
- luogu P5323 [BJOI2019]光线
传送门 先考虑\(n=1\)的情况不是输入数据都告诉你了吗 然后考虑\(n=2\),可以光线是在弹来弹去的废话,然后射出去的光线是个等比数列求和的形式,也就是\(x_1\sum_{i=1}^{\inf ...
- [BJOI2019] 光线
看起来很麻烦,做起来并不难的题 以下设:$a_i=\frac{a_i}{100},b_i=\frac{b_i}{100}$ 显然,如果$b_i=0$的话,直接求$\Pi a_i$就是答案. 解决反射问 ...
- 【BZOJ-2476】战场的数目 矩阵乘法 + 递推
2476: 战场的数目 Time Limit: 1 Sec Memory Limit: 128 MBSubmit: 58 Solved: 38[Submit][Status][Discuss] D ...
- 从一道NOI练习题说递推和递归
一.递推: 所谓递推,简单理解就是推导数列的通项公式.先举一个简单的例子(另一个NOI练习题,但不是这次要解的问题): 楼梯有n(100 > n > 0)阶台阶,上楼时可以一步上1阶,也可 ...
- Flags-Ural1225简单递推
Time limit: 1.0 second Memory limit: 64 MB On the Day of the Flag of Russia a shop-owner decided to ...
- 利用Cayley-Hamilton theorem 优化矩阵线性递推
平时有关线性递推的题,很多都可以利用矩阵乘法来解决. 时间复杂度一般是O(K3logn)因此对矩阵的规模限制比较大. 下面介绍一种利用利用Cayley-Hamilton theorem加速矩阵乘法的方 ...
随机推荐
- UnityC#中修改RectTransform
1.改变RectTransform的Left和Buttom GetComponent<RectTransform>().offsetMax = new Vector2(left, top) ...
- 在ASP.NET Core中实现自动注入、批量注入
我们在使用AddScoped.AddTransient.AddSingleton这类方法的时候很是麻烦.我们每增加一个接口以及其实现的时候,是不是需要在这里硬编码注册一行代码呢?项目小还好,但当我们的 ...
- jQuery异步请求ajax()之complete参数详解
请求完成后回调函数 (请求success 和 error之后均调用).这个回调函数得到2个参数:XMLHTTPRequest) 对象和一个描述请求状态的字符串("success", ...
- vue学习(6)-路由(导入包;创建子组件;创建路由对象)传参,子路由,多个组件
后端路由:对于普通的网站,所有的超链接都是URL地址,所有的URL地址都对应服务器上对应的资源 前端路由:对于单页面应用程序来说,主要通过URL中的hash(#号)来实现不同页面之间的切换(不会刷新页 ...
- linux服务脚本
#!/bin/sh ARG=$1 case $ARG in start): nohup /path/program & ;; stop): pkill program ;; restart): ...
- C++ 容器一图以蔽之
读完C++ primary 容器相关章节,有必要总结一下容器的要点,一图说明. 其中的问题,以下是我的一些想法,欢迎交流. 问题1. STL源码剖析 · vector 问题2. STL源码剖析 · R ...
- swoole| swoole 协程初体验 转
swoole| swoole 协程初体验 date: 2018-5-30 14:31:38title: swoole| swoole 协程初体验description: 通过协程的执行初窥 swo ...
- 去“BAT”这样面试,拿到offer的几率是80%
一.概述 面试,难还是不难?取决于面试者的底蕴(气场+技能).心态和认知及沟通技巧.面试其实可以理解为一场聊天和谈判,在这过程中有心理.思想上的碰撞和博弈.其实你只需要搞清楚一个逻辑:“面试官为什么会 ...
- 配置Python、Django环境变量教程
配置环境变量 在Windows下你必须配置环境变量! 右击桌面或者你能看到的任何 此电脑.这台电脑或者我的电脑. 右击:属性 点击:高级系统设置 点击:环境变量 找到系统变量下的Path,双击 点击新 ...
- VUE 单选下拉框Select中动态加载 默认选中第一个
<lable>分类情况</lable> <select v-model="content.tid"> <option v-for=&quo ...