GitHub排名TOP30的机器学习开源项目/贪心学院
对于机器学习者来说,阅读开源代码并基于代码构建自己的项目,是一个非常有效的学习方法。看看以下这些Github上平均star为3558的开源项目,你错了哪些?
1. FastText:快速文本表示和文本分类库(Github上有11786颗星,贡献者Facebook Research)
源码链接:https://github.com/facebookresearch/MUSE
2. Deep-photo-styletransfer:“Deep Photo Style Transfer” 这篇论文的源码和数据。(GitHub 9747颗星,论文来自于康奈尔大学的Fujun Luan)
源码链接:https://github.com/luanfujun/deep-photo-styletransfer
3. 用Python和命令行来实现的最简单的面部识别API(GitHub 8672颗星,贡献者Adam Geitgey)
源码链接:https://github.com/ageitgey/face_recognition
4. Magenta:利用机器智能生成音乐和美术艺术品(GitHub 8113颗星)
源码链接:https://github.com/tensorflow/magenta
5. Sonnet:基于TensorFlow的神经网络库(GitHub 573颗星,贡献者是DeepMind的Malcolm Reynolds )
源码链接:https://github.com/deepmind/sonnet
6. deeplearn.js: 一个用于Web的硬件加速机器学习库(GitHub 5462颗星,贡献者是Google Brain的Nikhil Thorat)
源码链接:https://github.com/PAIR-code/deeplearnjs
7. 基于TensorFlow的快速风格迁移库(GitHub 4843颗星,贡献者是MIT的Logan Engstrom)
源码链接:https://github.com/lengstrom/fast-style-transfer
8. Pysc2: 星际争霸2学习环境(GitHub 3684颗星,贡献者是DeepMind的Timo Ewalds)
源码链接:https://github.com/deepmind/pysc2
9. AirSim: Microsoft AI & Research开源的基于虚幻引擎的开源模拟器,用于自动驾驶(GitHub 3861颗星,贡献者是Microsoft的Shital Shah)
源码链接:https://github.com/Microsoft/AirSim
10. acets: 机器学习数据集的可视化工具(GitHub 3371颗星,由Google Brain贡献)
源码链接:https://github.com/PAIR-code/facets
11. Style2Paints:用AI技术为线稿快速上色的工具(GitHub 3310颗星)
源码链接:https://github.com/lllyasviel/style2paints
12. Tensor2Tensor:一个用于广义序列-序列模型的库 - Google Research(GitHub 3087颗星,贡献者是Google Brain的Ryan Sepassi)
源码链接:https://github.com/tensorflow/tensor2tensor
13. 基于Pytorch实现的图片-图片转换(GitHub 2847颗星,贡献者Berkeley的Jun-Yan Zhu, Ph.D)
源码地址:https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix
14. Faiss:用于密集向量的高效相似性搜索库和聚类的库(GitHub 2629颗星,贡献者Facebook Research)
源码地址:https://github.com/facebookresearch/faiss
15. Fashion-minist:类似于MNIST的时尚产品数据集(GitHub 2780颗星,贡献者是Zalando Tech的Han Xiao)
源码链接:https://github.com/zalandoresearch/fashion-mnist
16. ParlAI: 一个可用在各种公开可用的对话数据集上训练和评估AI模型的框架(GitHub 2578颗星,贡献者是Facebook 的Alexander Miller)
源码链接:https://github.com/facebookresearch/ParlAI
17. Fairseq:Facebook AI Research的序列-序列工具包(GitHub 2571颗星)
源码链接:https://github.com/facebookresearch/fairseq
18. Pyro:基于Python和PyTorch的深度通用概率编程(GitHub 2387颗星,贡献者Uber Engineering)
源码链接:https://github.com/uber/pyro
19. iGAN:基于GAN的交互式图像生成(GitHub 2369颗星)
源码地址:https://github.com/junyanz/iGAN
20. Deep-image-prior:用神经网络恢复图像(GitHub 2188颗星,贡献者是Skoltech的Dmitry Ulyanov, Ph.D)
源码地址:https://github.com/DmitryUlyanov/deep-image-prior
21. 人脸分类:基于 Keras CNN 模型与 OpenCV ,使用fer2013/imdb 数据集进行实时面部检测和表情/性别分类(GitHub 1967颗星)
源码地址:https://github.com/oarriaga/face_classification
22. Speech-to-Text-WaveNet:使用DeepMind的WaveNet和TensorFlow进行端到端句级英语语音识别(GitHub 1961颗星,贡献者是Kakao Brain的Namju Kim)
源码地址:https://github.com/buriburisuri/speech-to-text-wavenet
23. StarGAN: 用于多域图像-图像转化的统一生成对抗网络(GitHub 1954颗星,贡献者Korea University的Yunjey Choi)
源码地址:https://github.com/yunjey/StarGAN
24. MI-agents:Unity机器学习代理(GitHub 1658颗星,贡献者Unity3D的Arthur Juliani)
源码地址:https://github.com/Unity-Technologies/ml-agents
25. DeepVideoAnalytics:一个分布式可视化搜索和数据分析平台(GitHub 1494颗星,贡献者是Cornell University 的Akshay Bhat)
源码地址:https://github.com/AKSHAYUBHAT/DeepVideoAnalytics
26. OpenNMT:Torch上的开源神经机器翻译工具包(GitHub 1490颗星)
源码地址:https://github.com/OpenNMT/OpenNMT
27. Pix2pixHD: 用条件GAN合成和处理2048×1024的图像(GitHub 1283颗星,贡献者是英伟达科学家 Ming-Yu Liu)
源码地址:https://github.com/NVIDIA/pix2pixHD
28. Horovod:TensorFlow 布式 训练框架(GitHub 1188 颗星,贡献者来自Uber )
源码地址:https://github.com/uber/horovod
29. AI-Blocks: 一个强大而直观的所见即所得界面,可让任何人创建机器学习模型(GitHub 899颗星)
源码地址:https://github.com/MrNothing/AI-Blocks
30. Tensorflow实现的用于语音风格转换的深度神经网络(GitHub 845颗星,贡献者是Kakao Brain AI团队的Dabi Ahn)
源码地址:https://github.com/andabi/deep-voice-conversion
GitHub排名TOP30的机器学习开源项目/贪心学院的更多相关文章
- GitHub排名TOP30的机器学习开源项目
对于机器学习者来说,阅读开源代码并基于代码构建自己的项目,是一个非常有效的学习方法.看看以下这些Github上平均star为3558的开源项目,你错了哪些? 1. FastText:快速文本表示和文本 ...
- 2016年GitHub排名前20的Python机器学习开源项目(转)
当今时代,开源是创新和技术快速发展的核心.本文来自 KDnuggets 的年度盘点,介绍了 2016 年排名前 20 的 Python 机器学习开源项目,在介绍的同时也会做一些有趣的分析以及谈一谈它们 ...
- 机器学习开源项目精选TOP30
本文共图文结合,建议阅读5分钟. 本文为大家带来了30个广受好评的机器学习开源项目. 640?wx_fmt=jpeg&wxfrom=5&wx_lazy=1 最近,Mybridge发布了 ...
- 如何在 Github 上发现优秀的开源项目?
之前发过一系列有关 GitHub 的文章,有同学问了,GitHub 我大概了解了,Git 也差不多会使用了,但是还是搞不清 GitHub 如何帮助我的工作,怎么提升我的工作效率? 问到点子上了,Git ...
- 【转载】如何在 Github 上发现优秀的开源项目?
之前发过一系列有关 GitHub 的文章,有同学问了,GitHub 我大概了解了,Git 也差不多会使用了,但是还是搞不清 GitHub 如何帮助我的工作,怎么提升我的工作效率? 问到点子上了,Git ...
- Golang优秀开源项目汇总, 10大流行Go语言开源项目, golang 开源项目全集(golang/go/wiki/Projects), GitHub上优秀的Go开源项目
Golang优秀开源项目汇总(持续更新...)我把这个汇总放在github上了, 后面更新也会在github上更新. https://github.com/hackstoic/golang-open- ...
- (转载)如何在 Github 上发现优秀的开源项目?
转载自:传送门 之前发过一系列有关 GitHub 的文章,有同学问了,GitHub 我大概了解了,Git 也差不多会使用了,但是还是搞不清 GitHub 如何帮助我的工作,怎么提升我的工作效率? 问到 ...
- 2019年6月份Github上最热门的开源项目排行出炉,一起来看看本月上榜的开源项目
6月份Github上最热门的开源项目排行出炉,一起来看看本月上榜的开源项目有哪些: 1. the-art-of-command-line https://github.com/jlevy/the-ar ...
- 百度DMLC分布式深度机器学习开源项目(简称“深盟”)上线了如xgboost(速度快效果好的Boosting模型)、CXXNET(极致的C++深度学习库)、Minerva(高效灵活的并行深度学习引擎)以及Parameter Server(一小时训练600T数据)等产品,在语音识别、OCR识别、人脸识别以及计算效率提升上发布了多个成熟产品。
百度为何开源深度机器学习平台? 有一系列领先优势的百度却选择开源其深度机器学习平台,为何交底自己的核心技术?深思之下,却是在面对业界无奈时的远见之举. 5月20日,百度在github上开源了其 ...
随机推荐
- leetcode-63. Unique Paths II · DP + vector
题面 A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagram below). ...
- Nginx从安装到简单使用
一.什么是Nginx: Nginx是一个高性能的HTTP和反向代理服务,也是一个IMAP/POP3/SMTP服务. 二.Nginx作用: 反向代理,集群,虚拟服务器,负载均衡,动静分离,解决跨域问题等 ...
- Java面试容器,collection,list,set
1.容器指的是可以容纳其他对象的对象. 2.collection/set/list的联系和区别? (1)collection是Java集合顶级接口,存储一组不唯一,无序的对象: (2)list接口 ...
- Linux学习笔记(十四)磁盘管理(二):格式化、挂载以及Swap分区
一.格式化 第一种写法 mkfs.文件系统 [分区名称(设备文件路径)] 例如:对sdb硬盘的第一个分区以ext3文件系统进行格式化 第二种写法 mkfs -t 文件系统 [分区名称(设备文件路径) ...
- CF802C Heidi and Library (hard) 最小费用流
你有一个容量为k的空书架,现在共有n个请求,每个请求给定一本书ai,如果你的书架里没有这本书,你就必须以ci的价格购买这本书放入书架. 当然,你可以在任何时候丢掉书架里的某本书.请求出完成这n个请求所 ...
- 0004SpringBoot整合Redis
在已经整合了SpringDataJPA和Junit的基础上,整合Redis,只需要一下几步即可: 1.下载64windows版的Redis安装包.解压并启动服务端 2.配置Redis的起步依赖(pom ...
- [转载]Java进程物理内存远大于Xmx的问题分析
进程物理内存远大于Xmx的问题分析 问题描述 最近经常被问到一个问题,”为什么我们系统进程占用的物理内存(Res/Rss)会远远大于设置的Xmx值”,比如Xmx设置1.7G,但是top看到的Res的值 ...
- Redis做消息队列
1.连接从Redis中获取日志文件并存储到ES中 [root@Logstash ~]# vim /usr/local/logstash/config/redis.conf input { be ...
- Python+request 测试结果结合unittest生成测试报告《四》
测试报告示例图: 目录结构介绍: 主要涉及更改的地方: 1.导入 Common.HTMLTestRunner2文件 2.run_test.py文件中新增测试报告相关的代码 具体代码实现: 1 ...
- 后缀自动机再复习 + [USACO17DEC] Standing Out from the Herd
here:https://oi-wiki.org/string/sam/ 下面转自 KesdiaelKen的雷蒻论坛 来个广义后缀自动机模板题 [USACO17DEC]Standing Out fro ...