原博文出自于:  http://blog.fens.me/hadoop-maven-eclipse/      感谢!

 

用Maven构建Hadoop项目

Hadoop家族系列文章,主要介绍Hadoop家族产品,常用的项目包括Hadoop, Hive, Pig, HBase, Sqoop, Mahout, Zookeeper, Avro, Ambari, Chukwa,新增加的项目包括,YARN, Hcatalog, Oozie, Cassandra, Hama, Whirr, Flume, Bigtop, Crunch, Hue等。

从2011年开始,中国进入大数据风起云涌的时代,以Hadoop为代表的家族软件,占据了大数据处理的广阔地盘。开源界及厂商,所有数据软件,无一不向Hadoop靠拢。Hadoop也从小众的高富帅领域,变成了大数据开发的标准。在Hadoop原有技术基础之上,出现了Hadoop家族产品,通过“大数据”概念不断创新,推出科技进步。

作为IT界的开发人员,我们也要跟上节奏,抓住机遇,跟着Hadoop一起雄起!

关于作者:

  • 张丹(Conan), 程序员Java,R,PHP,Javascript
  • weibo:@Conan_Z
  • blog: http://blog.fens.me
  • email: bsspirit@gmail.com

转载请注明出处:
http://blog.fens.me/hadoop-maven-eclipse/

前言

Hadoop的MapReduce环境是一个复杂的编程环境,所以我们要尽可能地简化构建MapReduce项目的过程。Maven是一个很不错的自动化项目构建工具,通过Maven来帮助我们从复杂的环境配置中解脱出来,从而标准化开发过程。所以,写MapReduce之前,让我们先花点时间把刀磨快!!当然,除了Maven还有其他的选择Gradle(推荐), Ivy….

后面将会有介绍几篇MapReduce开发的文章,都要依赖于本文中Maven的构建的MapReduce环境。

目录

  1. Maven介绍
  2. Maven安装(win)
  3. Hadoop开发环境介绍
  4. 用Maven构建Hadoop环境
  5. MapReduce程序开发
  6. 模板项目上传github

1. Maven介绍

Apache Maven,是一个Java的项目管理及自动构建工具,由Apache软件基金会所提供。基于项目对象模型(缩写:POM)概念,Maven利用一个中央信息片断能管理一个项目的构建、报告和文档等步骤。曾是Jakarta项目的子项目,现为独立Apache项目。

maven的开发者在他们开发网站上指出,maven的目标是要使得项目的构建更加容易,它把编译、打包、测试、发布等开发过程中的不同环节有机的串联了起来,并产生一致的、高质量的项目信息,使得项目成员能够及时地得到反馈。maven有效地支持了测试优先、持续集成,体现了鼓励沟通,及时反馈的软件开发理念。如果说Ant的复用是建立在”拷贝–粘贴”的基础上的,那么Maven通过插件的机制实现了项目构建逻辑的真正复用。

2. Maven安装(win)

下载Maven:http://maven.apache.org/download.cgi

下载最新的xxx-bin.zip文件,在win上解压到 D:\toolkit\maven3

并把maven/bin目录设置在环境变量PATH:

然后,打开命令行输入mvn,我们会看到mvn命令的运行效果


~ C:\Users\Administrator>mvn
[INFO] Scanning for projects...
[INFO] ------------------------------------------------------------------------
[INFO] BUILD FAILURE
[INFO] ------------------------------------------------------------------------
[INFO] Total time: 0.086s
[INFO] Finished at: Mon Sep 30 18:26:58 CST 2013
[INFO] Final Memory: 2M/179M
[INFO] ------------------------------------------------------------------------
[ERROR] No goals have been specified for this build. You must specify a valid lifecycle phase or a goal in the format : or :[:]:. Available lifecycle phases are: validate, initialize, generate-sources, process-sources, generate-resources, process-resources, compile, process-class
es, generate-test-sources, process-test-sources, generate-test-resources, process-test-resources, test-compile, process-test-classes, test, prepare-package, package, pre-integration-test, integration-test, post-integration-test, verify, install, deploy, pre-clean, clean, post-clean, pre-site, site, post-site, site-deploy. -> [Help 1]
[ERROR]
[ERROR] To see the full stack trace of the errors, re-run Maven with the -e switch.
[ERROR] Re-run Maven using the -X switch to enable full debug logging.
[ERROR]
[ERROR] For more information about the errors and possible solutions, please read the following articles:
[ERROR] [Help 1] http://cwiki.apache.org/confluence/display/MAVEN/NoGoalSpecifiedException

安装Eclipse的Maven插件:Maven Integration for Eclipse

Maven的Eclipse插件配置

3. Hadoop开发环境介绍

如上图所示,我们可以选择在win中开发,也可以在linux中开发,本地启动Hadoop或者远程调用Hadoop,标配的工具都是Maven和Eclipse。

Hadoop集群系统环境:

  • Linux: Ubuntu 12.04.2 LTS 64bit Server
  • Java: 1.6.0_29
  • Hadoop: hadoop-1.0.3,单节点,IP:192.168.1.210

4. 用Maven构建Hadoop环境

  • 1. 用Maven创建一个标准化的Java项目
  • 2. 导入项目到eclipse
  • 3. 增加hadoop依赖,修改pom.xml
  • 4. 下载依赖
  • 5. 从Hadoop集群环境下载hadoop配置文件
  • 6. 配置本地host

1). 用Maven创建一个标准化的Java项目


~ D:\workspace\java>mvn archetype:generate -DarchetypeGroupId=org.apache.maven.archetypes -DgroupId=org.conan.myhadoop.mr
-DartifactId=myHadoop -DpackageName=org.conan.myhadoop.mr -Dversion=1.0-SNAPSHOT -DinteractiveMode=false
[INFO] Scanning for projects...
[INFO]
[INFO] ------------------------------------------------------------------------
[INFO] Building Maven Stub Project (No POM) 1
[INFO] ------------------------------------------------------------------------
[INFO]
[INFO] >>> maven-archetype-plugin:2.2:generate (default-cli) @ standalone-pom >>>
[INFO]
[INFO] <<< maven-archetype-plugin:2.2:generate (default-cli) @ standalone-pom <<<
[INFO]
[INFO] --- maven-archetype-plugin:2.2:generate (default-cli) @ standalone-pom ---
[INFO] Generating project in Batch mode
[INFO] No archetype defined. Using maven-archetype-quickstart (org.apache.maven.archetypes:maven-archetype-quickstart:1.
0)
Downloading: http://repo.maven.apache.org/maven2/org/apache/maven/archetypes/maven-archetype-quickstart/1.0/maven-archet
ype-quickstart-1.0.jar
Downloaded: http://repo.maven.apache.org/maven2/org/apache/maven/archetypes/maven-archetype-quickstart/1.0/maven-archety
pe-quickstart-1.0.jar (5 KB at 4.3 KB/sec)
Downloading: http://repo.maven.apache.org/maven2/org/apache/maven/archetypes/maven-archetype-quickstart/1.0/maven-archet
ype-quickstart-1.0.pom
Downloaded: http://repo.maven.apache.org/maven2/org/apache/maven/archetypes/maven-archetype-quickstart/1.0/maven-archety
pe-quickstart-1.0.pom (703 B at 1.6 KB/sec)
[INFO] ----------------------------------------------------------------------------
[INFO] Using following parameters for creating project from Old (1.x) Archetype: maven-archetype-quickstart:1.0
[INFO] ----------------------------------------------------------------------------
[INFO] Parameter: groupId, Value: org.conan.myhadoop.mr
[INFO] Parameter: packageName, Value: org.conan.myhadoop.mr
[INFO] Parameter: package, Value: org.conan.myhadoop.mr
[INFO] Parameter: artifactId, Value: myHadoop
[INFO] Parameter: basedir, Value: D:\workspace\java
[INFO] Parameter: version, Value: 1.0-SNAPSHOT
[INFO] project created from Old (1.x) Archetype in dir: D:\workspace\java\myHadoop
[INFO] ------------------------------------------------------------------------
[INFO] BUILD SUCCESS
[INFO] ------------------------------------------------------------------------
[INFO] Total time: 8.896s
[INFO] Finished at: Sun Sep 29 20:57:07 CST 2013
[INFO] Final Memory: 9M/179M
[INFO] ------------------------------------------------------------------------

进入项目,执行mvn命令


~ D:\workspace\java>cd myHadoop
~ D:\workspace\java\myHadoop>mvn clean install
[INFO]
[INFO] --- maven-jar-plugin:2.3.2:jar (default-jar) @ myHadoop ---
[INFO] Building jar: D:\workspace\java\myHadoop\target\myHadoop-1.0-SNAPSHOT.jar
[INFO]
[INFO] --- maven-install-plugin:2.3.1:install (default-install) @ myHadoop ---
[INFO] Installing D:\workspace\java\myHadoop\target\myHadoop-1.0-SNAPSHOT.jar to C:\Users\Administrator\.m2\repository\o
rg\conan\myhadoop\mr\myHadoop\1.0-SNAPSHOT\myHadoop-1.0-SNAPSHOT.jar
[INFO] Installing D:\workspace\java\myHadoop\pom.xml to C:\Users\Administrator\.m2\repository\org\conan\myhadoop\mr\myHa
doop\1.0-SNAPSHOT\myHadoop-1.0-SNAPSHOT.pom
[INFO] ------------------------------------------------------------------------
[INFO] BUILD SUCCESS
[INFO] ------------------------------------------------------------------------
[INFO] Total time: 4.348s
[INFO] Finished at: Sun Sep 29 20:58:43 CST 2013
[INFO] Final Memory: 11M/179M
[INFO] ------------------------------------------------------------------------

2). 导入项目到eclipse

我们创建好了一个基本的maven项目,然后导入到eclipse中。 这里我们最好已安装好了Maven的插件。

3). 增加hadoop依赖

这里我使用hadoop-1.0.3版本,修改文件:pom.xml


~ vi pom.xml <project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/maven-v4_0_0.xsd">
<modelVersion>4.0.0</modelVersion>
<groupId>org.conan.myhadoop.mr</groupId>
<artifactId>myHadoop</artifactId>
<packaging>jar</packaging>
<version>1.0-SNAPSHOT</version>
<name>myHadoop</name>
<url>http://maven.apache.org</url>
<dependencies>
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-core</artifactId>
<version>1.0.3</version>
</dependency> <dependency>
<groupId>junit</groupId>
<artifactId>junit</artifactId>
<version>4.4</version>
<scope>test</scope>
</dependency>
</dependencies>
</project>

4). 下载依赖

下载依赖:

~ mvn clean install

在eclipse中刷新项目:

项目的依赖程序,被自动加载的库路径下面。

5). 从Hadoop集群环境下载hadoop配置文件

  • core-site.xml
  • hdfs-site.xml
  • mapred-site.xml

查看core-site.xml


<?xml version="1.0"?>
<?xml-stylesheet type="text/xsl" href="configuration.xsl"?> <configuration>
<property>
<name>fs.default.name</name>
<value>hdfs://master:9000</value>
</property>
<property>
<name>hadoop.tmp.dir</name>
<value>/home/conan/hadoop/tmp</value>
</property>
<property>
<name>io.sort.mb</name>
<value>256</value>
</property>
</configuration>

查看hdfs-site.xml


<?xml version="1.0"?>
<?xml-stylesheet type="text/xsl" href="configuration.xsl"?> <configuration>
<property>
<name>dfs.data.dir</name>
<value>/home/conan/hadoop/data</value>
</property>
<property>
<name>dfs.replication</name>
<value>1</value>
</property>
<property>
<name>dfs.permissions</name>
<value>false</value>
</property>
</configuration>

查看mapred-site.xml


<?xml version="1.0"?>
<?xml-stylesheet type="text/xsl" href="configuration.xsl"?> <configuration>
<property>
<name>mapred.job.tracker</name>
<value>hdfs://master:9001</value>
</property>
</configuration>

保存在src/main/resources/hadoop目录下面

删除原自动生成的文件:App.java和AppTest.java

6).配置本地host,增加master的域名指向


~ vi c:/Windows/System32/drivers/etc/hosts 192.168.1.210 master

6. MapReduce程序开发

编写一个简单的MapReduce程序,实现wordcount功能。

新一个Java文件:WordCount.java


package org.conan.myhadoop.mr; import java.io.IOException;
import java.util.Iterator;
import java.util.StringTokenizer; import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapred.FileInputFormat;
import org.apache.hadoop.mapred.FileOutputFormat;
import org.apache.hadoop.mapred.JobClient;
import org.apache.hadoop.mapred.JobConf;
import org.apache.hadoop.mapred.MapReduceBase;
import org.apache.hadoop.mapred.Mapper;
import org.apache.hadoop.mapred.OutputCollector;
import org.apache.hadoop.mapred.Reducer;
import org.apache.hadoop.mapred.Reporter;
import org.apache.hadoop.mapred.TextInputFormat;
import org.apache.hadoop.mapred.TextOutputFormat; public class WordCount { public static class WordCountMapper extends MapReduceBase implements Mapper<Object, Text, Text, IntWritable> {
private final static IntWritable one = new IntWritable(1);
private Text word = new Text(); @Override
public void map(Object key, Text value, OutputCollector<Text, IntWritable> output, Reporter reporter) throws IOException {
StringTokenizer itr = new StringTokenizer(value.toString());
while (itr.hasMoreTokens()) {
word.set(itr.nextToken());
output.collect(word, one);
} }
} public static class WordCountReducer extends MapReduceBase implements Reducer<Text, IntWritable, Text, IntWritable> {
private IntWritable result = new IntWritable(); @Override
public void reduce(Text key, Iterator values, OutputCollector<Text, IntWritable> output, Reporter reporter) throws IOException {
int sum = 0;
while (values.hasNext()) {
sum += values.next().get();
}
result.set(sum);
output.collect(key, result);
}
} public static void main(String[] args) throws Exception {
String input = "hdfs://192.168.1.210:9000/user/hdfs/o_t_account";
String output = "hdfs://192.168.1.210:9000/user/hdfs/o_t_account/result"; JobConf conf = new JobConf(WordCount.class);
conf.setJobName("WordCount");
conf.addResource("classpath:/hadoop/core-site.xml");
conf.addResource("classpath:/hadoop/hdfs-site.xml");
conf.addResource("classpath:/hadoop/mapred-site.xml"); conf.setOutputKeyClass(Text.class);
conf.setOutputValueClass(IntWritable.class); conf.setMapperClass(WordCountMapper.class);
conf.setCombinerClass(WordCountReducer.class);
conf.setReducerClass(WordCountReducer.class); conf.setInputFormat(TextInputFormat.class);
conf.setOutputFormat(TextOutputFormat.class); FileInputFormat.setInputPaths(conf, new Path(input));
FileOutputFormat.setOutputPath(conf, new Path(output)); JobClient.runJob(conf);
System.exit(0);
} }

启动Java APP.

控制台错误


2013-9-30 19:25:02 org.apache.hadoop.util.NativeCodeLoader
警告: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
2013-9-30 19:25:02 org.apache.hadoop.security.UserGroupInformation doAs
严重: PriviledgedActionException as:Administrator cause:java.io.IOException: Failed to set permissions of path: \tmp\hadoop-Administrator\mapred\staging\Administrator1702422322\.staging to 0700
Exception in thread "main" java.io.IOException: Failed to set permissions of path: \tmp\hadoop-Administrator\mapred\staging\Administrator1702422322\.staging to 0700
at org.apache.hadoop.fs.FileUtil.checkReturnValue(FileUtil.java:689)
at org.apache.hadoop.fs.FileUtil.setPermission(FileUtil.java:662)
at org.apache.hadoop.fs.RawLocalFileSystem.setPermission(RawLocalFileSystem.java:509)
at org.apache.hadoop.fs.RawLocalFileSystem.mkdirs(RawLocalFileSystem.java:344)
at org.apache.hadoop.fs.FilterFileSystem.mkdirs(FilterFileSystem.java:189)
at org.apache.hadoop.mapreduce.JobSubmissionFiles.getStagingDir(JobSubmissionFiles.java:116)
at org.apache.hadoop.mapred.JobClient$2.run(JobClient.java:856)
at org.apache.hadoop.mapred.JobClient$2.run(JobClient.java:850)
at java.security.AccessController.doPrivileged(Native Method)
at javax.security.auth.Subject.doAs(Subject.java:396)
at org.apache.hadoop.security.UserGroupInformation.doAs(UserGroupInformation.java:1121)
at org.apache.hadoop.mapred.JobClient.submitJobInternal(JobClient.java:850)
at org.apache.hadoop.mapred.JobClient.submitJob(JobClient.java:824)
at org.apache.hadoop.mapred.JobClient.runJob(JobClient.java:1261)
at org.conan.myhadoop.mr.WordCount.main(WordCount.java:78)

这个错误是win中开发特有的错误,文件权限问题,在Linux下可以正常运行。

解决方法是,修改/hadoop-1.0.3/src/core/org/apache/hadoop/fs/FileUtil.java文件

688-692行注释,然后重新编译源代码,重新打一个hadoop.jar的包。


685 private static void checkReturnValue(boolean rv, File p,
686 FsPermission permission
687 ) throws IOException {
688 /*if (!rv) {
689 throw new IOException("Failed to set permissions of path: " + p +
690 " to " +
691 String.format("%04o", permission.toShort()));
692 }*/
693 }

我这里自己打了一个hadoop-core-1.0.3.jar包,放到了lib下面。

我们还要替换maven中的hadoop类库。


~ cp lib/hadoop-core-1.0.3.jar C:\Users\Administrator\.m2\repository\org\apache\hadoop\hadoop-core\1.0.3\hadoop-core-1.0.3.jar

再次启动Java APP,控制台输出:


2013-9-30 19:50:49 org.apache.hadoop.util.NativeCodeLoader
警告: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
2013-9-30 19:50:49 org.apache.hadoop.mapred.JobClient copyAndConfigureFiles
警告: Use GenericOptionsParser for parsing the arguments. Applications should implement Tool for the same.
2013-9-30 19:50:49 org.apache.hadoop.mapred.JobClient copyAndConfigureFiles
警告: No job jar file set. User classes may not be found. See JobConf(Class) or JobConf#setJar(String).
2013-9-30 19:50:49 org.apache.hadoop.io.compress.snappy.LoadSnappy
警告: Snappy native library not loaded
2013-9-30 19:50:49 org.apache.hadoop.mapred.FileInputFormat listStatus
信息: Total input paths to process : 4
2013-9-30 19:50:50 org.apache.hadoop.mapred.JobClient monitorAndPrintJob
信息: Running job: job_local_0001
2013-9-30 19:50:50 org.apache.hadoop.mapred.Task initialize
信息: Using ResourceCalculatorPlugin : null
2013-9-30 19:50:50 org.apache.hadoop.mapred.MapTask runOldMapper
信息: numReduceTasks: 1
2013-9-30 19:50:50 org.apache.hadoop.mapred.MapTask$MapOutputBuffer
信息: io.sort.mb = 100
2013-9-30 19:50:50 org.apache.hadoop.mapred.MapTask$MapOutputBuffer
信息: data buffer = 79691776/99614720
2013-9-30 19:50:50 org.apache.hadoop.mapred.MapTask$MapOutputBuffer
信息: record buffer = 262144/327680
2013-9-30 19:50:50 org.apache.hadoop.mapred.MapTask$MapOutputBuffer flush
信息: Starting flush of map output
2013-9-30 19:50:50 org.apache.hadoop.mapred.MapTask$MapOutputBuffer sortAndSpill
信息: Finished spill 0
2013-9-30 19:50:50 org.apache.hadoop.mapred.Task done
信息: Task:attempt_local_0001_m_000000_0 is done. And is in the process of commiting
2013-9-30 19:50:51 org.apache.hadoop.mapred.JobClient monitorAndPrintJob
信息: map 0% reduce 0%
2013-9-30 19:50:53 org.apache.hadoop.mapred.LocalJobRunner$Job statusUpdate
信息: hdfs://192.168.1.210:9000/user/hdfs/o_t_account/part-m-00003:0+119
2013-9-30 19:50:53 org.apache.hadoop.mapred.Task sendDone
信息: Task 'attempt_local_0001_m_000000_0' done.
2013-9-30 19:50:53 org.apache.hadoop.mapred.Task initialize
信息: Using ResourceCalculatorPlugin : null
2013-9-30 19:50:53 org.apache.hadoop.mapred.MapTask runOldMapper
信息: numReduceTasks: 1
2013-9-30 19:50:53 org.apache.hadoop.mapred.MapTask$MapOutputBuffer
信息: io.sort.mb = 100
2013-9-30 19:50:53 org.apache.hadoop.mapred.MapTask$MapOutputBuffer
信息: data buffer = 79691776/99614720
2013-9-30 19:50:53 org.apache.hadoop.mapred.MapTask$MapOutputBuffer
信息: record buffer = 262144/327680
2013-9-30 19:50:53 org.apache.hadoop.mapred.MapTask$MapOutputBuffer flush
信息: Starting flush of map output
2013-9-30 19:50:53 org.apache.hadoop.mapred.MapTask$MapOutputBuffer sortAndSpill
信息: Finished spill 0
2013-9-30 19:50:53 org.apache.hadoop.mapred.Task done
信息: Task:attempt_local_0001_m_000001_0 is done. And is in the process of commiting
2013-9-30 19:50:54 org.apache.hadoop.mapred.JobClient monitorAndPrintJob
信息: map 100% reduce 0%
2013-9-30 19:50:56 org.apache.hadoop.mapred.LocalJobRunner$Job statusUpdate
信息: hdfs://192.168.1.210:9000/user/hdfs/o_t_account/part-m-00000:0+113
2013-9-30 19:50:56 org.apache.hadoop.mapred.Task sendDone
信息: Task 'attempt_local_0001_m_000001_0' done.
2013-9-30 19:50:56 org.apache.hadoop.mapred.Task initialize
信息: Using ResourceCalculatorPlugin : null
2013-9-30 19:50:56 org.apache.hadoop.mapred.MapTask runOldMapper
信息: numReduceTasks: 1
2013-9-30 19:50:56 org.apache.hadoop.mapred.MapTask$MapOutputBuffer
信息: io.sort.mb = 100
2013-9-30 19:50:56 org.apache.hadoop.mapred.MapTask$MapOutputBuffer
信息: data buffer = 79691776/99614720
2013-9-30 19:50:56 org.apache.hadoop.mapred.MapTask$MapOutputBuffer
信息: record buffer = 262144/327680
2013-9-30 19:50:56 org.apache.hadoop.mapred.MapTask$MapOutputBuffer flush
信息: Starting flush of map output
2013-9-30 19:50:56 org.apache.hadoop.mapred.MapTask$MapOutputBuffer sortAndSpill
信息: Finished spill 0
2013-9-30 19:50:56 org.apache.hadoop.mapred.Task done
信息: Task:attempt_local_0001_m_000002_0 is done. And is in the process of commiting
2013-9-30 19:50:59 org.apache.hadoop.mapred.LocalJobRunner$Job statusUpdate
信息: hdfs://192.168.1.210:9000/user/hdfs/o_t_account/part-m-00001:0+110
2013-9-30 19:50:59 org.apache.hadoop.mapred.LocalJobRunner$Job statusUpdate
信息: hdfs://192.168.1.210:9000/user/hdfs/o_t_account/part-m-00001:0+110
2013-9-30 19:50:59 org.apache.hadoop.mapred.Task sendDone
信息: Task 'attempt_local_0001_m_000002_0' done.
2013-9-30 19:50:59 org.apache.hadoop.mapred.Task initialize
信息: Using ResourceCalculatorPlugin : null
2013-9-30 19:50:59 org.apache.hadoop.mapred.MapTask runOldMapper
信息: numReduceTasks: 1
2013-9-30 19:50:59 org.apache.hadoop.mapred.MapTask$MapOutputBuffer
信息: io.sort.mb = 100
2013-9-30 19:50:59 org.apache.hadoop.mapred.MapTask$MapOutputBuffer
信息: data buffer = 79691776/99614720
2013-9-30 19:50:59 org.apache.hadoop.mapred.MapTask$MapOutputBuffer
信息: record buffer = 262144/327680
2013-9-30 19:50:59 org.apache.hadoop.mapred.MapTask$MapOutputBuffer flush
信息: Starting flush of map output
2013-9-30 19:50:59 org.apache.hadoop.mapred.MapTask$MapOutputBuffer sortAndSpill
信息: Finished spill 0
2013-9-30 19:50:59 org.apache.hadoop.mapred.Task done
信息: Task:attempt_local_0001_m_000003_0 is done. And is in the process of commiting
2013-9-30 19:51:02 org.apache.hadoop.mapred.LocalJobRunner$Job statusUpdate
信息: hdfs://192.168.1.210:9000/user/hdfs/o_t_account/part-m-00002:0+79
2013-9-30 19:51:02 org.apache.hadoop.mapred.Task sendDone
信息: Task 'attempt_local_0001_m_000003_0' done.
2013-9-30 19:51:02 org.apache.hadoop.mapred.Task initialize
信息: Using ResourceCalculatorPlugin : null
2013-9-30 19:51:02 org.apache.hadoop.mapred.LocalJobRunner$Job statusUpdate
信息:
2013-9-30 19:51:02 org.apache.hadoop.mapred.Merger$MergeQueue merge
信息: Merging 4 sorted segments
2013-9-30 19:51:02 org.apache.hadoop.mapred.Merger$MergeQueue merge
信息: Down to the last merge-pass, with 4 segments left of total size: 442 bytes
2013-9-30 19:51:02 org.apache.hadoop.mapred.LocalJobRunner$Job statusUpdate
信息:
2013-9-30 19:51:02 org.apache.hadoop.mapred.Task done
信息: Task:attempt_local_0001_r_000000_0 is done. And is in the process of commiting
2013-9-30 19:51:02 org.apache.hadoop.mapred.LocalJobRunner$Job statusUpdate
信息:
2013-9-30 19:51:02 org.apache.hadoop.mapred.Task commit
信息: Task attempt_local_0001_r_000000_0 is allowed to commit now
2013-9-30 19:51:02 org.apache.hadoop.mapred.FileOutputCommitter commitTask
信息: Saved output of task 'attempt_local_0001_r_000000_0' to hdfs://192.168.1.210:9000/user/hdfs/o_t_account/result
2013-9-30 19:51:05 org.apache.hadoop.mapred.LocalJobRunner$Job statusUpdate
信息: reduce > reduce
2013-9-30 19:51:05 org.apache.hadoop.mapred.Task sendDone
信息: Task 'attempt_local_0001_r_000000_0' done.
2013-9-30 19:51:06 org.apache.hadoop.mapred.JobClient monitorAndPrintJob
信息: map 100% reduce 100%
2013-9-30 19:51:06 org.apache.hadoop.mapred.JobClient monitorAndPrintJob
信息: Job complete: job_local_0001
2013-9-30 19:51:06 org.apache.hadoop.mapred.Counters log
信息: Counters: 20
2013-9-30 19:51:06 org.apache.hadoop.mapred.Counters log
信息: File Input Format Counters
2013-9-30 19:51:06 org.apache.hadoop.mapred.Counters log
信息: Bytes Read=421
2013-9-30 19:51:06 org.apache.hadoop.mapred.Counters log
信息: File Output Format Counters
2013-9-30 19:51:06 org.apache.hadoop.mapred.Counters log
信息: Bytes Written=348
2013-9-30 19:51:06 org.apache.hadoop.mapred.Counters log
信息: FileSystemCounters
2013-9-30 19:51:06 org.apache.hadoop.mapred.Counters log
信息: FILE_BYTES_READ=7377
2013-9-30 19:51:06 org.apache.hadoop.mapred.Counters log
信息: HDFS_BYTES_READ=1535
2013-9-30 19:51:06 org.apache.hadoop.mapred.Counters log
信息: FILE_BYTES_WRITTEN=209510
2013-9-30 19:51:06 org.apache.hadoop.mapred.Counters log
信息: HDFS_BYTES_WRITTEN=348
2013-9-30 19:51:06 org.apache.hadoop.mapred.Counters log
信息: Map-Reduce Framework
2013-9-30 19:51:06 org.apache.hadoop.mapred.Counters log
信息: Map output materialized bytes=458
2013-9-30 19:51:06 org.apache.hadoop.mapred.Counters log
信息: Map input records=11
2013-9-30 19:51:06 org.apache.hadoop.mapred.Counters log
信息: Reduce shuffle bytes=0
2013-9-30 19:51:06 org.apache.hadoop.mapred.Counters log
信息: Spilled Records=30
2013-9-30 19:51:06 org.apache.hadoop.mapred.Counters log
信息: Map output bytes=509
2013-9-30 19:51:06 org.apache.hadoop.mapred.Counters log
信息: Total committed heap usage (bytes)=1838546944
2013-9-30 19:51:06 org.apache.hadoop.mapred.Counters log
信息: Map input bytes=421
2013-9-30 19:51:06 org.apache.hadoop.mapred.Counters log
信息: SPLIT_RAW_BYTES=452
2013-9-30 19:51:06 org.apache.hadoop.mapred.Counters log
信息: Combine input records=22
2013-9-30 19:51:06 org.apache.hadoop.mapred.Counters log
信息: Reduce input records=15
2013-9-30 19:51:06 org.apache.hadoop.mapred.Counters log
信息: Reduce input groups=13
2013-9-30 19:51:06 org.apache.hadoop.mapred.Counters log
信息: Combine output records=15
2013-9-30 19:51:06 org.apache.hadoop.mapred.Counters log
信息: Reduce output records=13
2013-9-30 19:51:06 org.apache.hadoop.mapred.Counters log
信息: Map output records=22

成功运行了wordcount程序,通过命令我们查看输出结果


~ hadoop fs -ls hdfs://192.168.1.210:9000/user/hdfs/o_t_account/result Found 2 items
-rw-r--r-- 3 Administrator supergroup 0 2013-09-30 19:51 /user/hdfs/o_t_account/result/_SUCCESS
-rw-r--r-- 3 Administrator supergroup 348 2013-09-30 19:51 /user/hdfs/o_t_account/result/part-00000 ~ hadoop fs -cat hdfs://192.168.1.210:9000/user/hdfs/o_t_account/result/part-00000 1,abc@163.com,2013-04-22 1
10,ade121@sohu.com,2013-04-23 1
11,addde@sohu.com,2013-04-23 1
17:21:24.0 5
2,dedac@163.com,2013-04-22 1
20:21:39.0 6
3,qq8fed@163.com,2013-04-22 1
4,qw1@163.com,2013-04-22 1
5,af3d@163.com,2013-04-22 1
6,ab34@163.com,2013-04-22 1
7,q8d1@gmail.com,2013-04-23 1
8,conan@gmail.com,2013-04-23 1
9,adeg@sohu.com,2013-04-23 1

这样,我们就实现了在win7中的开发,通过Maven构建Hadoop依赖环境,在Eclipse中开发MapReduce的程序,然后运行JavaAPP。Hadoop应用会自动把我们的MR程序打成jar包,再上传的远程的hadoop环境中运行,返回日志在Eclipse控制台输出。

7. 模板项目上传github

https://github.com/bsspirit/maven_hadoop_template

大家可以下载这个项目,做为开发的起点。

~ git clone https://github.com/bsspirit/maven_hadoop_template.git

我们完成第一步,下面就将正式进入MapReduce开发实践。

转载请注明出处:
http://blog.fens.me/hadoop-maven-eclipse/

转】用Maven构建Hadoop项目的更多相关文章

  1. 转】用Maven构建Mahout项目

    原博文出自于: http://blog.fens.me/hadoop-mahout-maven-eclipse/ 感谢! 用Maven构建Mahout项目 Hadoop家族系列文章,主要介绍Hadoo ...

  2. 用Maven构建Mahout项目

    转载请注明出处:http://blog.fens.me/hadoop-mahout-maven-eclipse/ Hadoop家族系列文章,主要介绍Hadoop家族产品,常用的项目包括Hadoop, ...

  3. 用Maven构建Mahout项目实现协同过滤userCF--单机版

    本文来自:http://blog.fens.me/hadoop-mahout-maven-eclipse/ 前言 基于Hadoop的项目,不管是MapReduce开发,还是Mahout的开发都是在一个 ...

  4. Maven构建Hadoop

    Maven构建Hadoop工程 阅读目录 序 Maven 安装 构建 示例下载 系列索引 序 上一篇,我们编写了第一个MapReduce,并且成功的运行了Job,Hadoop1.x是通过ant来管理工 ...

  5. 用Maven构建Mahout项目实现协同过滤ItemCF--集群版

    本文来自于:http://blog.fens.me/hadoop-mahout-mapreduce-itemcf/ 前言 Mahout是Hadoop家族一员,从血缘就继承了Hadoop程序的特点,支持 ...

  6. 使用Maven构建Android项目

    http://www.ikoding.com/build-android-project-with-maven/ 之前一直在做WEB前端项目,前段时间接手第一个Android项目,拿到代码之后,先试着 ...

  7. 使用Eclipse maven构建springmvc项目

    Eclipse maven构建springmvc项目 Listener 监听器 架构 使用Log4J监控系统日志邮件警报 2014-12-16 13:09:16 控制器在完成逻辑处理后,通常会产生一些 ...

  8. Maven学习:Eclipse使用maven构建web项目(转)

    Maven学习:Eclipse使用maven构建web项目(转) 8.更改class路径:右键项目,Java Build Path -> Source 下面应该有4个文件夹.src/main/j ...

  9. 利用Eclipse中的Maven构建Web项目(三)

    利用Eclipse中的Maven构建Web项目 1.将Maven Project转换成动态Web项目,鼠标右键项目,输入"Project Facets" 2.依据Dynamic W ...

随机推荐

  1. 【转】对Android开发者有益的40条优化建议

    下面是开始Android编程的好方法: 找一些与你想做事情类似的代码 调整它,尝试让它做你像做的事情 经历问题 使用StackOverflow解决问题 对每个你像添加的特征重复上述过程.这种方法能够激 ...

  2. Map和hash_map

    map和hash_map 今天在写拼流的程序时碰到一个问题,要根据流的四元组的结构信息映射到该流的数据.也就是我在网络数据包拼接的过程中,要根据包的地址和端口信息,对应到其对应的一个流的数据上去,把端 ...

  3. plsql programming 04 条件和顺序控制

    1. 条件语句 if salary > 40000 or salary is NULL then give_bonus(employee_id, 500); end if; if conditi ...

  4. cmd.exe-应用程序错误 应用程序无法正常启动(0xc0000142)

    之前还好好的,突然就遇到这个问题,运行CMD报错(如上图),后面无论怎么重启都是这样. 导致所有与CMD相关的程序任务都出错,例如Ctrl+Alt+Delete 只好开始各种百度谷歌 找到如下几种解决 ...

  5. B/S 和 C/S

    B/S最大优势为客户端免维护,适用于用户群庞大,或客户需求经长发生变化的情况. C/S功能强大,可以减轻服务器端压力,如果用户的需求特别复杂,用C/S. 全面: Client/Server是建立在局域 ...

  6. [转载] mysql5.6 删除之前的ibdata1文件后再重新生成,遇到[Warning] Info table is not ready to be used. Table 'mysql.slave_master_info' cannot be opened.问题

    [转载] mysql5.6 删除之前的ibdata1文件后再重新生成,遇到[Warning] Info table is not ready to be used. Table 'mysql.slav ...

  7. linux VFS 内核数据结构

    <strong>简单归纳:fd只是一个整数,在open时产生.起到一个索引的作用,进程通过PCB中的文件描述符表找到该fd所指向的文件指针filp.</strong> 文件描述 ...

  8. 使用 Linux 终端 SSH 登录 VPS

    Windows 中远程 SSH 登录 VPS 进行管理的利器是 PuTTY,但是 Linux 中就没必要用它了.Linux.Unix(包括 Mac iOS)都必然有内置的命令行终端,内建了 OpenS ...

  9. Oracle 11g对大表中添加DEFAULT值的NOT NULL字段速度有大幅度的提升

    在一张2000万的表上增加了一个字段并字段一个默认值,执行这条语句(alter table tablename add new_col default ‘col’)一个小时没有执行完,问我有没有其他解 ...

  10. Android Traceroute 功能实现

    经常在windows下开发网络功能的人 经常会使用的命令就是tracert .而实际上 在app开发中,我们也经常要碰到类似的情况.比如你的app 出现了问题,你总不能让用户想办法 去tracert吧 ...