题目:

A group of two or more people wants to meet and minimize the total travel distance. You are given a 2D grid of values 0 or 1, where each 1 marks the home of someone in the group. The distance is calculated using Manhattan Distance, where distance(p1, p2) = |p2.x - p1.x| + |p2.y - p1.y|.

For example, given three people living at (0,0)(0,4), and (2,2):

1 - 0 - 0 - 0 - 1
| | | | |
0 - 0 - 0 - 0 - 0
| | | | |
0 - 0 - 1 - 0 - 0

The point (0,2) is an ideal meeting point, as the total travel distance of 2+2+2=6 is minimal. So return 6.

Hint:

  1. Try to solve it in one dimension first. How can this solution apply to the two dimension case?

链接: http://leetcode.com/problems/best-meeting-point/

题解:

很有意思的一道题目,假设二维数组中一个点到其他给定点的Manhattan Distance最小,求distance和。 因为在一维数组中这个distance最小的点就是给定所有点的median,题目又给定使用曼哈顿距离,我们就可以把二维计算分解成为两个一维的计算。应该还可以用DP的方法解决,判断用哪一种方法其实非常复杂,依赖于mn和排序的比较。我们使用一个getMin方法来计算x方向或者y方向到他们中点的距离和。

Time Complexity - Math.max(O(mn), O(nlogn)), Space Complexity - O(mn)。

public class Solution {
public int minTotalDistance(int[][] grid) {
List<Integer> xAxis = new ArrayList<>();
List<Integer> yAxis = new ArrayList<>(); for(int i = 0; i < grid.length; i++) {
for(int j = 0; j < grid[0].length; j++) {
if(grid[i][j] == 1) {
xAxis.add(i);
yAxis.add(j);
}
}
} return getMin(xAxis) + getMin(yAxis);
} private int getMin(List<Integer> list) {
Collections.sort(list);
int res = 0;
int lo = 0, hi = list.size() - 1;
while(lo < hi) {
res += list.get(hi--) - list.get(lo++); // hi - mid + mid - lo = hi - lo
}
return res;
}
}

二刷:

还是用了简单地先遍历一遍数组,收集行坐标和列坐标,然后对两个list分别求一维Manhattan距离的方法。这里对列坐标list进行了排序。

Java:

Time Complexity - Math.max(O(mn), O(nlogn)), Space Complexity - O(mn)。

public class Solution {
public int minTotalDistance(int[][] grid) {
List<Integer> rows = new ArrayList<>(), cols = new ArrayList<>();
for (int i = 0; i < grid.length; i++) {
for (int j = 0; j < grid[0].length; j++) {
if (grid[i][j] == 1) {
rows.add(i);
cols.add(j);
}
}
}
Collections.sort(cols);
return getMinDist(rows) + getMinDist(cols);
} private int getMinDist(List<Integer> list) {
if (list == null || list.size() == 0) return Integer.MAX_VALUE;
int median = list.get(list.size() / 2);
int minDist = 0;
for (int idx : list) {
if (idx < median) minDist += median - idx;
else minDist += idx - median;
}
return minDist;
}
}

Update:

遍历两次数组,分别对行列坐标进行收集,速度反而比较快。应该是不少test case中m < logn的缘故。

Time Complexity - O(mn), O(nlogn), Space Complexity - O(mn)。

public class Solution {
public int minTotalDistance(int[][] grid) {
List<Integer> rows = new ArrayList<>(), cols = new ArrayList<>();
for (int i = 0; i < grid.length; i++) {
for (int j = 0; j < grid[0].length; j++) {
if (grid[i][j] == 1) rows.add(i);
}
}
for (int j = 0; j < grid[0].length; j++) {
for (int i = 0; i < grid.length; i++) {
if (grid[i][j] == 1) cols.add(j);
}
}
return getMinDist(rows) + getMinDist(cols);
} private int getMinDist(List<Integer> list) {
if (list == null || list.size() == 0) return Integer.MAX_VALUE;
int median = list.get(list.size() / 2);
int minDist = 0;
for (int idx : list) {
if (idx < median) minDist += median - idx;
else minDist += idx - median;
}
return minDist;
}
}

Update:

不计算median,利用median - lo + hi - median = hi - lo,同时计算lo和hi到median的距离。来自大神larrywang2014的写法。

public class Solution {
public int minTotalDistance(int[][] grid) {
List<Integer> rows = new ArrayList<>(), cols = new ArrayList<>();
for (int i = 0; i < grid.length; i++) {
for (int j = 0; j < grid[0].length; j++) {
if (grid[i][j] == 1) rows.add(i);
}
}
for (int j = 0; j < grid[0].length; j++) {
for (int i = 0; i < grid.length; i++) {
if (grid[i][j] == 1) cols.add(j);
}
}
return getMinDist(rows) + getMinDist(cols);
} private int getMinDist(List<Integer> list) {
if (list == null || list.size() == 0) return Integer.MAX_VALUE;
int minDist = 0;
int lo = 0, hi = list.size() - 1;
while (lo < hi) {
minDist += list.get(hi--) - list.get(lo++); // median - lo + hi - median = hi - lo
}
return minDist;
}
}

Reference:

https://leetcode.com/discuss/65336/14ms-java-solution

https://leetcode.com/discuss/65366/o-mn-java-2ms

https://leetcode.com/discuss/65464/java-python-40ms-pointers-solution-median-sort-explanation

https://leetcode.com/discuss/66401/the-only-person-dont-know-median-could-give-shortest-distance

http://math.stackexchange.com/questions/113270/the-median-minimizes-the-sum-of-absolute-deviations

https://leetcode.com/discuss/65510/simple-java-code-without-sorting

http://www.jiuzhang.com/problem/30/

296. Best Meeting Point的更多相关文章

  1. [LeetCode] 296. Best Meeting Point 最佳开会地点

    A group of two or more people wants to meet and minimize the total travel distance. You are given a ...

  2. 【leetcode】296.Best Meeting Point

    原题 A group of two or more people wants to meet and minimize the total travel distance. You are given ...

  3. LeetCode All in One 题目讲解汇总(持续更新中...)

    终于将LeetCode的免费题刷完了,真是漫长的第一遍啊,估计很多题都忘的差不多了,这次开个题目汇总贴,并附上每道题目的解题连接,方便之后查阅吧~ 477 Total Hamming Distance ...

  4. LeetCode题目按公司分类

    LinkedIn(39) 1 Two Sum 23.0% Easy 21 Merge Two Sorted Lists 35.4% Easy 23 Merge k Sorted Lists 23.3% ...

  5. LeetCode All in One题解汇总(持续更新中...)

    突然很想刷刷题,LeetCode是一个不错的选择,忽略了输入输出,更好的突出了算法,省去了不少时间. dalao们发现了任何错误,或是代码无法通过,或是有更好的解法,或是有任何疑问和建议的话,可以在对 ...

  6. Leetcode重点 250题-前400 题

    删除不常考,面试低频出现题目 删除重复代码题目(例:链表反转206题,代码在234题出现过) 删除过于简单题目(例:100题:Same Tree) 删除题意不同,代码基本相同题目(例:136 & ...

  7. LeetCode分类-前400题

    1. Array 基础 27 Remove Element 26 Remove Duplicates from Sorted Array 80 Remove Duplicates from Sorte ...

  8. Hard模式题目

    先过一下Hard模式的题目吧.   # Title Editorial Acceptance Difficulty Frequency   . 65 Valid Number     12.6% Ha ...

  9. 继续过Hard题目

    接上一篇:http://www.cnblogs.com/charlesblc/p/6283064.html 继续过Hard模式的题目吧.   # Title Editorial Acceptance ...

随机推荐

  1. [Android Training视频系列] 8.3 Dealing with Audio Output Hardware

    用户在播放音乐的时候有多个选择,可以使用内置的扬声器,有线耳机或者是支持A2DP的蓝牙耳机.(补充:A2DP全名是Advanced Audio Distribution Profile 蓝牙音频传输模 ...

  2. MFC源码不能设置断点调试

    用VS2013中MFC开发应用程序时,进入MFC源码设置断点调试.但是在调试过程中发现无法进入源码.最后发现在MFC设置的MFC的使用默认值是在共享dll中使用MFC,这就意味着MFC中的源码并没有连 ...

  3. jQuery插件开发总结

    jQuery插件的开发包括两种: 一种是类级别的插件开发$.extend,即给jQuery添加新的全局函数,相当于给jQuery类本身添加方法,比如:$.ajax, $.getJSON等.jQuery ...

  4. linux 操作

    正在运行的内核和系统信息 # uname -a # 获取内核版本(和BSD版本) # lsb_release -a # 显示任何 LSB 发行版版本信息 # cat /etc/SuSE-release ...

  5. 用npm安装express后express命令找不到

    Windows 平台加了 npm install -g express 也不行AppData\Roaming\npm 下面没有 express.bat 解决办法: sudo npm install - ...

  6. [工作积累] error: bad class file magic (cafebabe) or version (0033.0000)

    Update Android SDK build tool to latest can solve my problem.

  7. jquery ajax/post/get 传参数给 mvc的action

    jquery ajax/post/get 传参数给 mvc的action1.ActionResult Test1    2.View  Test1.aspx3.ajax page4.MetaObjec ...

  8. Linux 搭建SVN 服务器(转)

    一. SVN 简介 Subversion(SVN) 是一个开源的版本控制系統, 也就是说 Subversion 管理着随时间改变的数据. 这些数据放置在一个中央资料档案库 (repository) 中 ...

  9. POJ 1548 Robots (Dilworth)

    Robots Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 3621 Accepted: 1643 Description Yo ...

  10. Ogre1.8.1编译时大量warning的问题

    本文的编译环境为Windows7_SP1 + VS2010_SP1 :) 当编译Ogre1.8.1的源码时,会出现大量的warning,如图: 虽然没有太大影响,但是程序员都希望自己的程序是没有war ...