数据结构 《2》----基于邻接表表示的图的实现 DFS(递归和非递归), BFS
图通常有两种表示方法: 邻接矩阵 和 邻接表
对于稀疏的图,邻接表表示能够极大地节省空间。
以下是图的数据结构的主要部分:
struct Vertex{
ElementType element; //节点的名字
Edge *next; //所包含的边组成的单链表的头指针
};
struct Edge{
int adj; //节点的标号(0-number of nodes)
Edge *next;
};
注意,实际应用中,节点都有名字,而不是数字,所以我们需要提供从名字到标号的映射。
最简单的方法就是 Hash(散列表),或者二叉查找树之类的能够快速提供查询的数据结构。
本文的处理较为简单: 节点的名字是 'a' ---- 'z', 所以映射通过简单的运算即可实现: node id = node name - 'a'.
// copyright @ L.J.SHOU Jan.13, 2014 #include "graph.h"
#include <ctime>
#include <iostream>
#include <stack>
#include <queue>
using namespace std; typedef char ElementType;
typedef Vertex* Graph; enum Color{WHITE, GRAY, BLACK}; struct Edge
{
int vertex;
int weight;
Edge *next;
}; struct Vertex
{
Color color;
ElementType element;
int start, finish;
Edge *next;//head of adjacent list
}; Graph Create(Graph graph, int n)
{
graph = new Vertex[n];
for(int i=0; i<n; ++i)
{
graph[i].color = WHITE;
graph[i].element = i + 'a';
graph[i].start = 0;
graph[i].finish = 0;
graph[i].next = NULL;
}
return graph;
} // Reset Graph
void Clear(Graph graph, int n)
{
for(int i=0; i<n; ++i)
{
graph[i].color = WHITE;
graph[i].start = 0;
graph[i].finish = 0;
}
} Graph DeleteGraph(Graph graph, int n)
{
for(int i=0; i<n; ++i)
{
Edge* head(graph[i].next), *next(NULL);
while(head)
{
next = head->next;
delete head;
head = next;
}
}
delete [] graph;
return NULL;
} // return the outdegree of vertex i
int OutDegree(Graph g, int i)
{
int num(0); Edge* link(g[i].next);
while(link)
{
link = link->next;
++ num;
}
return num;
} // test whether edge(i, j) exists
bool Exist(Graph g, int i, int j)
{
Edge *link(g[i].next); while(link && link->vertex != j)
link = link->next; if(link == NULL)
return false;
else
return true;
} bool InsertEdge(Graph g, int i, int j)
{
if(Exist(g, i, j)){
cout << "edge (" << i << "," << j << ") already existed" << endl;
return false;
} Edge *edge(NULL);
edge = new struct Edge;
edge->vertex = j;
edge->next = g[i].next;
g[i].next = edge; return true;
} bool DeleteEdge(Graph g, int i, int j)
{
if(!Exist(g, i, j)){
cout << "edge (" << i << "," << j << ") doesn't exist" << endl;
return false;
} Edge *cur(g[i].next), *pre(cur); while(cur && cur->vertex != j)
{
pre = cur;
cur = cur->next;
} if(pre == NULL)
{ // delete head edge
g[i].next = cur->next;
delete cur;
}
else
{
pre->next = cur->next;
delete cur;
}
return true;
} // print adjacent list
void OutPut(Graph g, int n)
{
Edge *edge(NULL);
for(int i=0; i<n; ++i)
{
cout << g[i].element << "->";
edge = g[i].next;
while(edge)
{
cout << g[edge->vertex].element << "->";
edge = edge->next;
}
cout << "NULL" << endl;
}
} void DFS(Graph graph, int n)
{
cout << "DFS: " << endl;;
Clear(graph, n);
for(int i=0; i<n; ++i)
{
if(graph[i].color == WHITE)
DFSVisit(graph, i);
}
cout << endl; cout << "DFS_stack: " << endl;
Clear(graph, n);
for(int i=0; i<n; ++i)
{
if(graph[i].color == WHITE)
DFSVisitStack(graph, i);
}
cout << endl;
} // recursive DFS
void DFSVisit(Graph graph, int i)
{
static int time(0);
Edge *link(graph[i].next); cout << graph[i].element << " ";
graph[i].color = GRAY;
graph[i].start = ++time; while(link)
{
if(graph[link->vertex].color == WHITE)
DFSVisit(graph, link->vertex);
link = link->next;
} graph[i].finish = ++time;
graph[i].color = BLACK;
} // non-recursive DFS
void DFSVisitStack(Graph g, int i)
{
static int time(0);
struct Edge* edge;
int vertex;
stack<int> s; //visit vertex i
cout << g[i].element << " ";
g[i].color = GRAY;
g[i].start = ++time;
s.push(i); while(!s.empty())
{
vertex = s.top();
edge = g[vertex].next;
while(edge)
{
if(g[edge->vertex].color == WHITE)
{
s.push(edge->vertex);
cout << g[edge->vertex].element << " ";
g[edge->vertex].start = ++time;
g[edge->vertex].color = GRAY;
break;
}
edge = edge->next;
}
//vertex's neigbours have been visited
if(edge == NULL){
s.pop();
g[vertex].color = BLACK;
g[vertex].finish = ++time;
}
}
} /////////////////////////////////////////////////////////////
// search all vertices that can be rearched from Source s ///
// compute the distances from source s /// ///////////////
/////////////////////////////////////////////////////////////
void BFS(Graph g, int n, int s)
{
queue<int> q;
Edge *edge(NULL);
int vertex; //visit source vertex
Clear(g, n);
cout << "BFS: " << endl;;
cout << g[s].element << " ";
g[s].color = GRAY;
q.push(s); while(!q.empty())
{
//dequeue
vertex = q.front();
q.pop(); //all the adjacent vertices
edge = g[vertex].next;
while(edge)
{
if(g[edge->vertex].color == WHITE){
g[edge->vertex].color = GRAY;
cout << g[edge->vertex].element << " ";
//enqueue
q.push(edge->vertex);
}
edge = edge->next;
}
g[vertex].color = BLACK;
}//end of while cout << endl;
} int main()
{
Graph graph;
int num_vertices = 8; graph = Create(graph, num_vertices); InsertEdge(graph,0,1);
InsertEdge(graph,1,2);
InsertEdge(graph,2,3);
InsertEdge(graph,3,2);
InsertEdge(graph,4,0);
InsertEdge(graph,1,5);
InsertEdge(graph,2,6);
InsertEdge(graph,3,7);
InsertEdge(graph,1,4);
InsertEdge(graph,4,5);
InsertEdge(graph,5,6);
InsertEdge(graph,6,7);
InsertEdge(graph,7,7);
InsertEdge(graph,6,5); OutPut(graph, num_vertices);
DFS(graph, num_vertices);
BFS(graph, num_vertices, 0); graph = DeleteGraph(graph, num_vertices); return 0;
}
数据结构 《2》----基于邻接表表示的图的实现 DFS(递归和非递归), BFS的更多相关文章
- 图的基本操作(基于邻接表):图的构造,深搜(DFS),广搜(BFS)
#include <iostream> #include <string> #include <queue> using namespace std; //表结点 ...
- SDUT 2142 数据结构实验之图论二:基于邻接表的广度优先搜索遍历
数据结构实验之图论二:基于邻接表的广度优先搜索遍历 Time Limit: 1000MS Memory Limit: 65536KB Submit Statistic Problem Descript ...
- 数据结构C++使用邻接表实现图
定义邻接表存储的图类.[实验要求] (1)创建一个邻接表存储的图:(2)返回图中指定边的权值:(3)插入操作:向图中插入一个顶点,插入一条边:(4)删除操作:从图中删除一个顶点,删除一条边:(5)图的 ...
- 无向图的 DFS 和 BFS实现 (以邻接表存储的图)
#include <iostream> #include <queue> using namespace std; #define MaxVertexNum 10 typede ...
- 数据结构二叉树的递归与非递归遍历之java,javascript,php实现可编译(1)java
前一段时间,学习数据结构的各种算法,概念不难理解,只是被C++的指针给弄的犯糊涂,于是用java,web,javascript,分别去实现数据结构的各种算法. 二叉树的遍历,本分享只是以二叉树中的先序 ...
- 数据结构作业——图的存储及遍历(邻接矩阵、邻接表+DFS递归、非递归+BFS)
邻接矩阵存图 /* * @Author: WZY * @School: HPU * @Date: 2018-11-02 18:35:27 * @Last Modified by: WZY * @Las ...
- SDUT2142数据结构实验之图论二:基于邻接表的广度优先搜索遍历
http://acm.sdut.edu.cn/sdutoj/showproblem.php?pid=2142&cid=1186 题目描述 给定一个无向连通图,顶点编号从0到n-1,用广度优先搜 ...
- Invitation Cards(邻接表+逆向建图+SPFA)
Time Limit: 8000MS Memory Limit: 262144K Total Submissions: 17538 Accepted: 5721 Description In ...
- 基于邻接表的长度为k的简单路径的求解
描述 一个连通图采用邻接表作为存储结构.设计一个算法,判断无向图中任意给定的两点是否存在一条长度为k的简单路径. 输入 多组数据,每组m+3数据行.第一行有两个数字n,m和k,代表有n个顶点,m条边和 ...
随机推荐
- css3制作滚动按钮
1,中间圆点用到css3的gradient属性 2,运动用到css3的transition属性 3,需要写各个浏览器的兼容 代码如下 <!DOCTYPE html> <html la ...
- Web前端开发面试题
1. 以下的代码有问题吗?如果有你觉着应该如何修改? for(int i=0; i<list.size(); i++) { ..... ..... if(...) { list.re ...
- CSS水平居中和垂直居中解决方案
一.CSS 居中 — 水平居中 DIV等标签本身没有定义自己居中的属性,网上很多的方法都是介绍用上级的text-align: center,然后嵌套一层DIV来解决问题. 可是这个方法有时候完全不起作 ...
- 218. The Skyline Problem *HARD* -- 矩形重叠
A city's skyline is the outer contour of the silhouette formed by all the buildings in that city whe ...
- 一个.net mvc的例子
控制器 ( Controller) Product 下面功能主要根据多条件搜索产品的列表的功能 public ActionResult ProductList(string cityID, strin ...
- finally块中的代码一定会执行吗?
在Sun Tutorial中有这样一句话:The finally block always executes when the try block exits. This ensures that t ...
- Java 多线程 —— synchronized关键字
java 多线程 目录: Java 多线程——基础知识 Java 多线程 —— synchronized关键字 java 多线程——一个定时调度的例子 java 多线程——quartz 定时调度的例子 ...
- 转--CSS选择器详解(一)常用选择器
今天复习一下CSS的知识,看了篇文章觉得很好,转来备用. 转自:http://www.cnblogs.com/fattydoit/p/3492028.html 目录 类型选择器 类选择器 ID选择器 ...
- mapreduce 输入输出类型
默认的mapper是IdentityMapper,默认的reducer是IdentityReducer,它们将输入的键和值原封不动地写到输出中. 默认的partitioner是HashPartitin ...
- apache日志轮转
apache默认的日志配置为: ErrorLog "logs/error_log" CustomLog "logs/access_log" co ...