numpy中的broadcast
关于broadcast,官方文档描述如下:
Each universal function takes array inputs and produces array outputs by performing the core function element-wise
on the inputs. Standard broadcasting rules are applied so that inputs not sharing exactly the same shapes can still be
usefully operated on. Broadcasting can be understood by four rules:
1. All input arrays with ndim smaller than the input array of largest ndim, have 1’s prepended to their shapes.
2. The size in each dimension of the output shape is the maximum of all the input sizes in that dimension.
3. An input can be used in the calculation if its size in a particular dimension either matches the output size in that
dimension, or has value exactly 1.
4. If an input has a dimension size of 1 in its shape, the first data entry in that dimension will be used for all
calculations along that dimension. In other words, the stepping machinery of the ufunc will simply not step
along that dimension (the stride will be 0 for that dimension).
Broadcasting is used throughout NumPy to decide how to handle disparately shaped arrays; for example, all arith-
metic operations (+, -, * , ...) between ndarrays broadcast the arrays before operation. A set of arrays is called
“broadcastable” to the same shape if the above rules produce a valid result, i.e., one of the following is true:
1. The arrays all have exactly the same shape.
2. The arrays all have the same number of dimensions and the length of each dimensions is either a common length
or 1.
3. The arrays that have too few dimensions can have their shapes prepended with a dimension of length 1 to satisfy
property 2.
Example
If a.shape is (5,1), b.shape is (1,6), c.shape is (6,) and d.shape is () so that d is a scalar, then a, b, c, and d
are all broadcastable to dimension (5,6); and
• a acts like a (5,6) array where a[:,0] is broadcast to the other columns,
• b acts like a (5,6) array where b[0,:] is broadcast to the other rows,
• c acts like a (1,6) array and therefore like a (5,6) array where c[:] is broadcast to every row, and finally,
这里面对于形状的描述都是很完整的,但是有时候我们也见到这样的定义
a = np.zeros((2,))
print(a)
array([0.,0.0])
注意只有一个中括号,但是我们定义
a = np.zeros((2,1))的时候
print(a)
array([[0,],[0.]])
默认情况下,a = np.zeros((2,))定义的是一个向量,它的形状跟(2,1)是不一样的,要转型的话,默认是转成(1,2)的!!!
numpy的数组存储默认是跟C 语言一样,行优先的,所以向量默认是行向量,也可以修改成FORTRAN那种列优先的方式!
numpy中的broadcast的更多相关文章
- numpy 中的broadcast 机制
https://www.cnblogs.com/jiaxin359/p/9021726.html
- numpy 中的 broadcasting 理解
broadcast 是 numpy 中 array 的一个重要操作. 首先,broadcast 只适用于加减. 然后,broadcast 执行的时候,如果两个 array 的 shape 不一样,会先 ...
- numpy中matrix的特殊属性
一.matrix特殊属性解释 numpy中matrix有下列的特殊属性,使得矩阵计算更加容易 摘自 NumPy Reference Release 1.8.1 1.1 The N-dimensiona ...
- 在python&numpy中切片(slice)
在python&numpy中切片(slice) 上文说到了,词频的统计在数据挖掘中使用的频率很高,而切片的操作同样是如此.在从文本文件或数据库中读取数据后,需要对数据进行预处理的操作.此时就 ...
- Numpy中Meshgrid函数介绍及2种应用场景
近期在好几个地方都看到meshgrid的使用,虽然之前也注意到meshgrid的用法.但总觉得印象不深刻,不是太了解meshgrid的应用场景.所以,本文将进一步介绍Numpy中meshgrid的用法 ...
- [开发技巧]·Numpy中对axis的理解与应用
[开发技巧]·Numpy中对axis的理解与应用 1.问题描述 在使用Numpy时我们经常要对Array进行操作,如果需要针对Array的某一个纬度进行操作时,就会用到axis参数. 一般的教程都是针 ...
- numpy中的随机数模块
https://www.cnblogs.com/td15980891505/p/6198036.html numpy.random模块中提供啦大量的随机数相关的函数. 1 numpy中产生随机数的方法 ...
- Python numpy中矩阵的用法总结
关于Python Numpy库基础知识请参考博文:https://www.cnblogs.com/wj-1314/p/9722794.html Python矩阵的基本用法 mat()函数将目标数据的类 ...
- numpy 中的reshape,flatten,ravel 数据平展,多维数组变成一维数组
numpy 中的reshape,flatten,ravel 数据平展,多维数组变成一维数组 import numpy as np 使用array对象 arr1=np.arange(12).reshap ...
随机推荐
- jmeter 构建一个LDAP测试计划
添加用户 第一步你想做的每一个JMeter测试计划是添加一个线程组元素. 线程组告诉JMeter的用户数量你想模拟,用户应该发送的次数 请求,他们应该发送的请求的数量. 继续添加ThreadGroup ...
- SPSS中变量的度量标准
在SPSS中,每一个变量都有一个度量标准,这些度量标准说明变量的含义和属性,会对后续的分析产生影响. 1.名义:名义表示定类变量,定类变量表示事物的类别,只能计算频数和频率,各类别之间没有大小.顺序. ...
- Visual Studio中的快捷键
我们在使用Visual Studio的时候,如用一些快捷键,就能减少我们键盘和鼠标来回切换的次数,从而提高我们编码的速度,在此跟大家分享一些经常Visual Studio中用到的快捷键 自动缩进:选中 ...
- Error in Android Studio - "Default Activity Not Found"
Make sure you have specified the default activity in your AndroidManisfest.xml file. Within your def ...
- 【转】Nginx+php-fpm+MySQL分离部署详解
转:http://www.linuxidc.com/Linux/2015-07/120580.htm Nginx+php-fpm+MySQL分离部署详解 [日期:2015-07-26] 来源:Linu ...
- Jquery异步提交$.ajax的使用
function test(){ var myEntity=new Object(); myEntity.pro1="xxx"; myEntity.pro2=10; $.ajax( ...
- 注册并启动 Reporting Services SharePoint 服务
在安装 SharePoint 之前已安装 Reporting Services SharePoint 模式.所以Reporting Services SharePoint 是不能正常使用的. 安装完S ...
- C#语法小用法
数据在存为数据库之前,用JS的encodeURIComponent进行编码,现需要在后台代码中进行解码,实现decodeURIComponent的功能, 如下: HttpUtility.UrlDeco ...
- VBA读取可选择文件夹下可选择txt文件内容
Sub OneTxt() '打开一个txt文件 Dim Filename As Variant, extLine&, mArr() As String Dim i%, j% ChDir Thi ...
- 10 notorious computer virus
The history of computer virus is the same as computer history. With more and more powerful computers ...