Given two numbers represented as strings, return multiplication of the numbers as a string.

Note: The numbers can be arbitrarily large and are non-negative.

第一眼看到这个题目,潜意识里觉得直接将字符串转换为数字相乘,然后将结果再转换为字符串,难道这题考的是字符串与数值之间的转换?

细看,发现数字可能非常大,那么问题来了:这个数据类型怎么定义呢?显然这种思路完全是错的了。

那么怎么解决这个问题呢?仔细一想问题可能在于如何理解这个乘法过程(题目中multiply可是关键字)了。由于经验尚浅,花了一些时间去琢磨,最后参照一些资料做出了如下分析:(算法题还是有很多值得用心思考的地方的,要学会抓住解决问题的痛点,和把握细节)

1、要模拟竖式乘法的计算过程(透过问题看本质)

2、这个过程有乘法思维,还有加法思维在里面(因为涉及到进位)

3、要把乘法和加法操作过程分清楚,每次一个新位与被乘数相乘之前,都要加上进位再处理。(注意细节)

4、为了顺应习惯,把两个数字reverse过来再操作,最后还原顺序。

代码如下:

class Solution {
public:
string multiply(string num1, string num2) {
int m = num1.size(), n = num2.size();//字符串元素个数
if (num1 == "0" || num2 == "0") return "0";
vector<int> res(m+n, 0);
reverse(begin(num1),end(num1));//字符串反转
reverse(begin(num2),end(num2));
for (int i = 0; i < n; ++i)
for (int idx = i, j = 0; j < m; ++j)
res[idx++] += (num2[i]-'0')*(num1[j]-'0');// 字符转化为数字然后相乘(ascll码) int carry = 0;
for (int i = 0; i < m+n; ++i) {
int tmp = res[i];
res[i] = (tmp+carry)%10;
carry = (tmp+carry)/10;//进位
} string str(m+n,'0');
for (int k = 0, i = res.size()-1; i >= 0; --i) str[k++] = res[i]+'0';//还原顺序
auto idx = str.find_first_not_of('0');//将str字符串中第一个不匹配字符‘0’的索引值赋给idx
return str.substr(idx);//从起始字符序号idx开始取得str中的子字符串(消除了前面的0)
}
};

 其他解法:

1、
class Solution {
public:
string multiply(string num1, string num2) {
string sum(num1.size() + num2.size(), '0'); for (int i = num1.size() - 1; 0 <= i; --i) {
int carry = 0;
for (int j = num2.size() - 1; 0 <= j; --j) {
int tmp = (sum[i + j + 1] - '0') + (num1[i] - '0') * (num2[j] - '0') + carry;
sum[i + j + 1] = tmp % 10 + '0';
carry = tmp / 10;
}
sum[i] += carry;
} size_t startpos = sum.find_first_not_of("0");
if (string::npos != startpos) {
return sum.substr(startpos);
}
return "0";
}
};

 

This is an example of the pretty straightforward but very efficient C++ solution with 8ms runtime on OJ. It seems most of people here implemented solutions with base10 arithmetic, however that is suboptimal. We should use a different base.

This was a hint. Now stop, think, and consider coding your own solution before reading the spoiler below.

The idea used in the algorithm below is to interpret number as number written in base 1 000 000 000 as we decode it from string. Why 10^9? It is max 10^n number which fits into 32-bit integer. Then we apply the same logic as we used to hate in school math classes, but on digits which range from 0 to 10^9-1.

You can compare the multiplication logic in other posted base10 and this base1e9 solutions and you'll see that they follow exactly same pattern.

Note, that we have to use 64-bit multiplication here and the carry has to be a 32-bit value as well

class Solution {
public:
void toBase1e9(const string& str, vector<uint32_t>& out)
{
int i = str.size() - 1;
uint32_t v = 0;
uint32_t f = 1;
do
{
int n = str[i] - '0';
v = v + n * f;
if (f == 100000000) {
out.push_back(v);
v = 0;
f = 1;
}
else {
f *= 10;
}
i--;
} while (i >= 0);
if (f != 1) {
out.push_back(v);
}
} string fromBase1e9(const vector<uint32_t>& num)
{
stringstream s;
for (int i = num.size() - 1; i >= 0; i--) {
s << num[i];
s << setw(9) << setfill('0');
}
return s.str();
} string multiply(string num1, string num2)
{
if (num1.size() == 0 || num2.size() == 0)
return "0";
vector<uint32_t> d1;
toBase1e9(num1, d1);
vector<uint32_t> d2;
toBase1e9(num2, d2);
vector<uint32_t> result;
for (int j = 0; j < d2.size(); j++) {
uint32_t n2 = d2[j];
int p = j;
uint32_t c = 0;
for (int i = 0; i < d1.size(); i++) {
if (result.size() <= p)
result.push_back(0);
uint32_t n1 = d1[i];
uint64_t r = n2;
r *= n1;
r += result[p];
r += c;
result[p] = r % 1000000000;
c = r / 1000000000;
p++;
}
if (c) {
if (result.size() <= p)
result.push_back(0);
result[p] = c;
}
} return fromBase1e9(result);
}
};

  

 

leetcode:Multiply Strings的更多相关文章

  1. leetcode:Multiply Strings(字符串的乘法)【面试算法题】

    题目: Given two numbers represented as strings, return multiplication of the numbers as a string. Note ...

  2. LeetCode 043 Multiply Strings

    题目要求:Multiply Strings Given two numbers represented as strings, return multiplication of the numbers ...

  3. [LeetCode] 43. Multiply Strings ☆☆☆(字符串相乘)

    转载:43. Multiply Strings 题目描述 就是两个数相乘,输出结果,只不过数字很大很大,都是用 String 存储的.也就是传说中的大数相乘. 解法一 我们就模仿我们在纸上做乘法的过程 ...

  4. 【leetcode】Multiply Strings

    Multiply Strings Given two numbers represented as strings, return multiplication of the numbers as a ...

  5. LeetCode OJ:Multiply Strings (字符串乘法)

    Given two numbers represented as strings, return multiplication of the numbers as a string. Note: Th ...

  6. [LeetCode] 43. Multiply Strings 字符串相乘

    Given two non-negative integers num1 and num2represented as strings, return the product of num1 and  ...

  7. LeetCode(43. Multiply Strings)

    题目: Given two numbers represented as strings, return multiplication of the numbers as a string. Note ...

  8. Java for LeetCode 043 Multiply Strings

    Given two numbers represented as strings, return multiplication of the numbers as a string. Note: Th ...

  9. 【leetcode】Multiply Strings(middle)

    Given two numbers represented as strings, return multiplication of the numbers as a string. Note: Th ...

随机推荐

  1. A*(A星)算法python实现

    在春节放假前两天我偶然看到了A\*算法(A\*算法是一个启发式的地图寻路算法),感觉挺有意思.正好放假前也没有什么事情,就花了一个下午写出算法的骨架,节后又花了半天时间完善屏幕输出的细节并且调试完成. ...

  2. AutoResetEvent 运用

    static AutoResetEvent are = new AutoResetEvent(true);//初始化为开 static void Main(string[] args) { //如果这 ...

  3. confusing uv

    in a projection u from letf to right is 0---1 in another proj u is the same but when i output u in r ...

  4. 如何在PL/SQL Developer 中设置 在select时 显示所有的数据

    在执行select 时, 总是不显示所有的记录, 要点一下, 下面那个按钮才会显示所有的数据.     解决方法: Tools>Preferences>Window Types>SQ ...

  5. Asp.net与Flex交互测试记录

    一.利用asp.net为Flex提供数据服务,flex为前端表现. 二.flex通过三种方式四种代码实现来取数据.分别为     HttpService. WebService. RemoteObje ...

  6. samsung-smart app 开发

    http://www.samsungdforum.com/ http://seller.samsungapps.com/login/signIn.as?returnURL=%2fmain%2fsell ...

  7. 函数式 CSS (FCSS)

    在Wealthfront我们是一个函数式编程的超级粉丝.强调不变性和函数式风格意味着更少的“意外”(surprises),因为副作用是有限的或不存在的.我们能将独立的组件迅速构建出大型系统,通过组合的 ...

  8. SPOJ375 Query on a tree(LCT边权)

    之前做了两道点权的LCT,这次做一下边权的LCT.上网找了一下资料,发现对于边权的LCT有这么两种处理方法,一种是每条边建一个点,于是边权就转成点权了.另外一种则是每个边权对应到点权上,也就是每个点对 ...

  9. C#两种创建快捷方式的方法

    C#两种创建快捷方式的方法http://www.cnblogs.com/linmilove/archive/2009/06/10/1500989.html

  10. 在WCF中使用消息队列

    在一些大型的解决方案中,假设我们的服务没有办法一直在线,或者因为这样那样的原因宕机了,有没有什么办法让客户端的影响最小化呢?答案是可以通过消息队列的方式,哪怕服务是没有在线的,客户端依然可以继续操作. ...