感觉又学到了一个利器!

感谢Vfleaking神犇,传送门 http://vfleaking.blog.163.com/blog/static/1748076342013112523651955/  以及07年集训队周冬的论文《生成树的计数及其运用》

行列式性质:参见论文。利用性质可以很快求出行列式的值。

基尔霍夫矩阵:用度数矩阵-邻接矩阵。 求出这个矩阵n-1阶主子式的绝对值就是生成树个数。证明Vfleaking神犇给的十分清楚。

Matrix-Tree定理的更多相关文章

  1. BZOJ.4031.[HEOI2015]小Z的房间(Matrix Tree定理 辗转相除)

    题目链接 辗转相除解行列式的具体实现? 行列式的基本性质. //864kb 64ms //裸的Matrix Tree定理.练习一下用辗转相除解行列式.(因为模数不是质数,所以不能直接乘逆元来高斯消元. ...

  2. [bzoj1016][JSOI2008]最小生成树计数 (Kruskal + Matrix Tree 定理)

    Description 现在给出了一个简单无向加权图.你不满足于求出这个图的最小生成树,而希望知道这个图中有多少个不同的最小生成树.(如果两颗最小生成树中至少有一条边不同,则这两个最小生成树就是不同的 ...

  3. @总结 - 7@ 生成树计数 —— matrix - tree 定理(矩阵树定理)与 prüfer 序列

    目录 @0 - 参考资料@ @0.5 - 你所需要了解的线性代数知识@ @1 - 矩阵树定理主体@ @证明 part - 1@ @证明 part - 2@ @证明 part - 3@ @证明 part ...

  4. 【证明与推广与背诵】Matrix Tree定理和一些推广

    [背诵手记]Matrix Tree定理和一些推广 结论 对于一个无向图\(G=(V,E)\),暂时钦定他是简单图,定义以下矩阵: (入)度数矩阵\(D\),其中\(D_{ii}=deg_i\).其他= ...

  5. 数学-Matrix Tree定理证明

    老久没更了,冬令营也延期了(延期后岂不是志愿者得上学了?) 最近把之前欠了好久的债,诸如FFT和Matrix-Tree等的搞清楚了(啊我承认之前只会用,没有理解证明--),FFT老多人写,而Matri ...

  6. SPOJ.104.Highways([模板]Matrix Tree定理 生成树计数)

    题目链接 \(Description\) 一个国家有1~n座城市,其中一些城市之间可以修建高速公路(无自环和重边). 求有多少种方案,选择修建一些高速公路,组成一个交通网络,使得任意两座城市之间恰好只 ...

  7. HDU 4305 Lightning Matrix Tree定理

    题目链接:https://vjudge.net/problem/HDU-4305 解法:首先是根据两点的距离不大于R,而且中间没有点建立一个图.之后就是求生成树计数了. Matrix-Tree定理(K ...

  8. BZOJ.4894.天赋(Matrix Tree定理 辗转相除)

    题目链接 有向图生成树个数.矩阵树定理,复习下. 和无向图不同的是,度数矩阵改为入度矩阵/出度矩阵,分别对应外向树/内向树. 删掉第i行第i列表示以i为根节点的生成树个数,所以必须删掉第1行第1列. ...

  9. BZOJ.1016.[JSOI2008]最小生成树计数(Matrix Tree定理 Kruskal)

    题目链接 最小生成树有两个性质: 1.在不同的MST中某种权值的边出现的次数是一定的. 2.在不同的MST中,连接完某种权值的边后,形成的连通块的状态是一样的. \(Solution1\) 由这两个性 ...

  10. [模板]Matrix Tree定理

    结论:一个图的生成树个数等于它的度数矩阵减邻接矩阵得到的矩阵(基尔霍夫矩阵)的任意一个n-1阶主子式的行列式的绝对值 证明:不会 求法:高斯消元 例题:[HEOI2013]小Z的房间 #include ...

随机推荐

  1. struts2标签之列求和

    struts2标签之列求和 <table width="100%" border="0" cellpadding="0" cellsp ...

  2. HDU5829 NTT

    以下这份代码并没有过.但感觉没有问题.不是蜜汁WA就是蜜汁T. #include <cstdio> #include <iostream> #include <cstri ...

  3. tracert命令详解

    一.windows.Linux系统下 tracert ip/网站域名 二.mac traceroute IP/域名 ---------2016-10-10 15:29:07-- source:[1]t ...

  4. 09 高效的PL/SQL程序设计

    程序包 Package 断开了依赖链 实验依赖关系: <1> 首先不使用包 -- 创建表 CREATE table t (x int); -- 创建视图 create view v as ...

  5. MVC中Html.Listbox的用法实例

    要绑定listbox或dropdownlist前提是:必须是SelectItem类,例如: 因为Html.ListBox第二个绑定数据的参数要得类型为SelectList第一种:因为listbox可以 ...

  6. maven常见问题问答

    1.前言 Maven,发音是[`meivin],"专家"的意思.它是一个很好的项目管理工具,很早就进入了我的必备工具行列,但是这次为了把project1项目完全迁移并应用maven ...

  7. 集群--LVS的DR模型配置

    1.查看内核是否有IPVS内核模块 grep -i 'ip_vs' /boot/config-2.6.32-431.el6.x86_64

  8. Android 监听键盘的弹起与收缩

    Android 监听键盘的弹起与收缩 由于android不存在该监听的API 所以需要自己去处理 先上代码 /* android:windowSoftInputMode="stateAlwa ...

  9. unsigned 整型实现无溢出运算

    普通的 int 整型能表示的范围很有限,所以刷题时很多时候不得不用 long long 来存更大的数据.或者找出数列中某个只出现一次(或奇数次)的数(其余的数均出现两次 / 偶数次),用异或运算的经典 ...

  10. 转:为什么C++中空类和空结构体大小为1?

    参考:http://www.spongeliu.com/260.html 为什么C++中空类和空结构体大小为1? On November 17, 2010, in C语言, 语言学习, by spon ...