本文主要内容是 CNN 的 BP 算法,看此文章前请保证对CNN有初步认识,可参考Neurons Networks convolutional neural network(cnn)

网络表示

CNN相对于传统的全连接DNN来说增加了卷积层与池化层,典型的卷积神经网络中(比如LeNet-5 ),开始几层都是卷积和池化的交替,然后在靠近输出的地方做成全连接网络,这时候已经将所有两维2D的特征maps转化为全连接的一维网络的输入。在前向传导或城中中,也只有两处与传统的 MLP 有所不同,分别是卷积层前向传导,与 pooling 传导到卷积层,如下图所示:

在上图中,层 $(l-1)$ 可以为pooling 层或是输入层,$(l)$ 层对 $(l-1)$ 层进行卷积操作,$(l+1)$ 对 $(l)$ 进行pooling操作。

符号表示

$K^{(l-1)}$:$(l-1)$ 层用到的卷积核,即$(l-1)$ 层的权值参数;

$K^{(l-1)}_{ij}$:从 $(l-1)$层映射到 $(l)$ 层Feature Map j 所用到的卷积核 $j$ 的第 $i$ 个卷积模板;

$b^{(l-1)}$:$(l-1)$ 层的偏置参数;

$b^{(l-1)}_j$:映射到 $(l)$ 层中的 Feature Map j 的偏置参数;

$w^{(l)}$:表示 $(l)$ 层的参数;

$w^{(l)}_j$:卷积层第 j 个Feature Map 到 pooling 层第 j 个 Feature Map 是一一对应关系,即每个Feature Map 对应一个$w^{(l)}_j$;

$b^{(l)}$:$(l)$ 层的偏置参数;

$b^{(l)}_j$:卷积层第 j 个Feature Map 到pooling层第 j 个 Feature Map的偏置参数;

$z^{(l)}$:$(l)$ 层的输入;

$a^{(l)}$:$(l)$ 层的输出.

前向传导

CNN 的前向传导,首先从 $(l-1)$ 层到 $(l)$ 层,此处一般为多对多的形式,即对多个通道进行卷积操作,生成多个Feature Map,$(l)$ 层第 j 个Feature Map的输入 $z_j^{(l)}$ 的计算如下:

\[\mathbf{z}_j^{(l)} = \left ( \sum_{j \in M_j}\mathbf{a}_i^{(l-1)}*\mathbf{K}_{ij}^{(l-1)}\right)+b_j^{(l-1)}\]

需要注意:这里   $\mathbf{z}_j^{(l)},\mathbf{a}_i^{(l-1)},\mathbf{K}_{ij}^{(l-1)}$ 均为向量形式," "表示卷积操作,$\mathbf{z}_j^{(l)}$ 代表 第j 个 Feature Map 的输入,$\mathbf{a}_i^{(l-1)}$ 代表第 $(l-1)$ 层第 i 个 Feature Map的输出,$\mathbf{K}_{ij}^{l-1}$ 代表第 j 个卷积核中第 i 个卷积模板,要生成 $(l)$ 层的第 j 个Feature Map,需要对 $(l-1)$ 层的 $M_j$ 个通道同时进行卷积操作,对得到的结果加偏置求和即可。

第 $(l)$ 层的输出只需要对输入$z_j^{(l)}$ 做一个激活函数即可:

综上,从层 到层可以用下图描述:

接下来从到传导到第层,此处对应pooling 操作,一般为一对一的形式,层的第 N 个 Feature Map 生成层的N个 Feature Map ,计算过程如下:

这里down(.)对应的是一个下采样(sub-sampling) 函数,这个函数会对层的输出中的n-n的像素块进行pooling操作,使得输出在横纵方向都缩小n倍。经过down(.)操作后,有相同的 size 根据以上公式计算即可。同理,输出继续做一个映射:

至此,前向传导过程已经可以求得,接下来与MLP类似,就是根据链式求导法则,求得残差的反向传导。

前馈 (Back Propagation)

对于  pooling 层,假设已知其第 j 个Feature Map 的残差向量 ,将其传导到,即pooling层的误差传导到卷积层:

比如对于,即层的第 j 个 Feature Map 的残差项如下图左,对其做 操作,得到下图右:

                  

                                  后

操作与相反, 操作会还原的残差map,使其与卷积层的map大小一致,即还原到down(.)之前的大小。这里残差为一对一传递,将层 的map的激活函数的偏导数与从第 层的得到的残差map逐元素相乘,最后乘以参数即可,注意这里为一个常量,每个Feature Map j 对应一个参数

卷积层层一般为多对多的关系,根据以上分析求得了卷积层的残差项,接下来就是卷积层的残差反向传导的过程。卷积层前面分两种情况,1)若卷积层前面为pooling层,则上面假设已知的就是根据这里的推导所求得,并不是凭空出现。2)卷积层前面为初始输入。

首先回忆卷积过程,卷积核 j 会对层多个通道进行卷积(每个通道对应 j 的一个卷积模板)求和,才会得到得到层  的第 j 个 Feature Map,所以层的通道 i 的残差项应该由与之相关的层  的所有Feature Map j 共同前向传导。假设与层的通道 i 相关的  的所有Feature Map 共有 M 个,则有:

后做卷积的意思是完全卷积 假设输入图像 A 大小为 a x b,卷积核 B 大小为c x d,操作会对A进行填充,在 A 左右各填充(d-1)列,上下各填充(c-1)行,即  后 A 的大小变为( a+2c-2)x(b+2d-2),用B对后的A做卷积,则卷积返回的大小为(a+b-1)x(a+b-1)。即为旋转180度。

此处公式设计到卷积操作,形式比较复杂,下面引入一个示例来讲解上述公式:

层的大小为 3 x 3,对层的通道 i (为了便于说明,假设层为单通道),通过如下两个卷积核  、    ,得到  层的两个Feature Map,假设其残差已经求得(前边已经讲过如何求卷积层的残差),残差分别为 

分别进行操作与操作:

进行卷积,进行卷积:

注意此处不考虑项(或者认为是线性激活 即 = 1),对结果求和有:

以上过程即完成了整个公式的计算,为什么这么计算呢?可以把以上过程展开,把与  展开为全连接的形式,(此处清楚起见,只写了),根据MLP中误差按权值平均反向传导的形式 可求得层的残差,其实归根到底还是MLP得形式。

求解网络参数的导数

至此,关于CNN中的输入前向传导与残差的后向反馈全部计算完成,下面可以根据来对网络的权值    进行求导。

假设当前损失函数为

1)对于 ,根据链式求导法则:

根据残差的定义与前边的计算公式:

   

可得到如下公式,公式中的累加是因为 conv 层中 n *n 的区域变为 1个 1*1 的 pooling 元素,但是 这 n*n 的权值取值是一样的,所以对该权值求导是 pooling 层所有节点的累加:

这里均为实数,且中的所有元素的参数均为,所以对结果向量进行求和操作。这里的代表对层Feature Map j 中的所有元素求和

2)对于  ,根据链式求导法则:

根据残差的定义与前边的计算公式:

   

可得:

同样通过一个实例说明关于卷积核的偏导数求解过程,对层的通道 i 用卷积核进行卷积操作,得到层的 Feature Map j,其残差已经求得,对于下图左的卷积过程展开,下图右为展开后:

注意这里层的节点① ② ④ ⑤ 用卷积核卷积生成生成层的节点①,即层的节点① ② ④ ⑤ 与层的节点①通过权值相连,分别为回忆传统的MLP网络的参数求导公式:

所以这里有对于单个层的节点①对应的权值求导有:

考虑层的节点② ③ ④对应的权值与节点①对应的权值相等(用的同一卷积核):所以可以忽略节点对应的下标:

同样分别对节点层的节点② ③ ④对应的权值求导,比如对于节点 ④:

最终将偏导数项相加有:

下图描述了以上过程,等等,仔细观察一下以上公式,这不就是用层残差Map 对层的输出做卷积吗?oh my god,的导数可以通过对层的输出与卷积层的残差矩阵卷积得到!!

总结以上公式综上所述:

1)任意层前向传到到卷积层与卷积层前向传导到pooling层

2)pooling层前馈到卷积层,与卷积层前馈到任意层

3)任意层与卷积层之间参数的求导

  

4)pooling层与卷积层之间参数的求导

 

一些复杂的卷积操作matlab函数('valid' 与 'full' 表示的卷积模式不同):

至此,CNN中的前后向传导的过程全部推倒完毕,其实万变不离其宗,归根到底还是MLP那一套BP算法,接下来就是实现CNN了,也就是cs231n的作业。

参考:

UFLDL,Ng

Notes on Convolutional Neural Networks,Jake Bouvrie

http://www.cnblogs.com/tornadomeet/p/3468450.html

http://blog.csdn.net/zouxy09/article/details/9993371

(六)6.18 cnn 的反向传导算法的更多相关文章

  1. CS229 6.18 CNN 的反向传导算法

    本文主要内容是 CNN 的 BP 算法,看此文章前请保证对CNN有初步认识. 网络表示 CNN相对于传统的全连接DNN来说增加了卷积层与池化层,典型的卷积神经网络中(比如LeNet-5 ),开始几层都 ...

  2. UFLDL 教程学习笔记(二)反向传导算法

    UFLDL(Unsupervised Feature Learning and Deep Learning)Tutorial 是由 Stanford 大学的 Andrew Ng 教授及其团队编写的一套 ...

  3. 卷积神经网络(CNN)反向传播算法

    在卷积神经网络(CNN)前向传播算法中,我们对CNN的前向传播算法做了总结,基于CNN前向传播算法的基础,我们下面就对CNN的反向传播算法做一个总结.在阅读本文前,建议先研究DNN的反向传播算法:深度 ...

  4. 卷积神经网络(CNN)前向传播算法

    在卷积神经网络(CNN)模型结构中,我们对CNN的模型结构做了总结,这里我们就在CNN的模型基础上,看看CNN的前向传播算法是什么样子的.重点会和传统的DNN比较讨论. 1. 回顾CNN的结构 在上一 ...

  5. 反向传播算法 Backpropagation Algorithm

    假设我们有一个固定样本集,它包含 个样例.我们可以用批量梯度下降法来求解神经网络.具体来讲,对于单个样例(x,y),其代价函数为:这是一个(二分之一的)方差代价函数.给定一个包含 个样例的数据集,我们 ...

  6. 神经网络训练中的Tricks之高效BP(反向传播算法)

    神经网络训练中的Tricks之高效BP(反向传播算法) 神经网络训练中的Tricks之高效BP(反向传播算法) zouxy09@qq.com http://blog.csdn.net/zouxy09 ...

  7. 循环神经网络(RNN)模型与前向反向传播算法

    在前面我们讲到了DNN,以及DNN的特例CNN的模型和前向反向传播算法,这些算法都是前向反馈的,模型的输出和模型本身没有关联关系.今天我们就讨论另一类输出和模型间有反馈的神经网络:循环神经网络(Rec ...

  8. (3)Deep Learning之神经网络和反向传播算法

    往期回顾 在上一篇文章中,我们已经掌握了机器学习的基本套路,对模型.目标函数.优化算法这些概念有了一定程度的理解,而且已经会训练单个的感知器或者线性单元了.在这篇文章中,我们将把这些单独的单元按照一定 ...

  9. CNN的反向传播

    在一般的全联接神经网络中,我们通过反向传播算法计算参数的导数.BP 算法本质上可以认为是链式法则在矩阵求导上的运用.但 CNN 中的卷积操作则不再是全联接的形式,因此 CNN 的 BP 算法需要在原始 ...

随机推荐

  1. **RESTful API版本控制策略

    做RESTful开放平台,一方面其API变动越少, 对API调用者越有利:另一方面,没有人可以预测未来,系统在发展的过程中,不可避免的需要添加新的资源,或者修改现有资源.因此,改动升级必不可少,但是, ...

  2. hdu 3886 Final Kichiku “Lanlanshu” 数位DP

    思路: dp[i][j][k]:满足在字符串的j位,前一位数字是k. 代码如下: #include<iostream> #include<cstdio> #include< ...

  3. linux下如何查看主机的外网ip地址

    在linux下如果我们使用的是nat方式上网.通过ifconfig命令查看到的ip地址往往是内网地址 那么如何查看主机在互联网上使用的公网IP呢?我们可以在命令行下使用curl命令实现这个功能. [r ...

  4. java消息队列

    来个个人通俗的解释吧.消息队列,顾名思义 首先是个队列.队列的操作有入队和出队 也就是你有一个程序在产生内容然后入队(生产者) 另一个程序读取内容,内容出队(消费者) 我想你应该是缺乏一个使用场景. ...

  5. sdk manager更新超时 time out

    sdk manager选择菜单tools->options,勾选下面的force https......重启sdk manager

  6. VS2010/MFC编程入门之二(利用MFC向导生成单文档应用程序框架)

    VS2010/MFC编程入门之二(利用MFC向导生成单文档应用程序框架)-软件开发-鸡啄米 http://www.jizhuomi.com/software/141.html   上一讲中讲了VS20 ...

  7. 【重走Android之路】【番外篇】有关于null的一些知识点

    [重走Android之路][番外篇]有关于null的一些知识点   1.首先,到底什么是null? null是Java中的一个关键字,用于表示一个空对象引用,但其本身并不是任何类型也不是属于任何对象. ...

  8. 【解惑】让人头疼的"相等"关系

    Java中判断相等关系一般有两种手段:(1) “==”关系操作符  (2) equals()方法. 显然,基本数据类型变量之间只能用"==".而对象之间两种手段都是合法的.但是有很 ...

  9. Path Sum的变体

    早上看到一个面经题跟Path Sum很像, 给一个TreeNode root和一个target,找到一条从根节点到leaf的路径,其中每个节点和等于target. 与Path Sum不同是, Path ...

  10. 266. Palindrome Permutation

    题目: Given a string, determine if a permutation of the string could form a palindrome. For example,&q ...