POJ 1523 SPF(寻找关节点)
| Time Limit: 1000MS | Memory Limit: 10000K | |
| Total Submissions: 8155 | Accepted: 3730 |
Description
Node 3 is therefore a Single Point of Failure (SPF) for this
network. Strictly, an SPF will be defined as any node that, if
unavailable, would prevent at least one pair of available nodes from
being able to communicate on what was previously a fully connected
network. Note that the network on the right has no such node; there is
no SPF in the network. At least two machines must fail before there are
any pairs of available nodes which cannot communicate.

Input
input will contain the description of several networks. A network
description will consist of pairs of integers, one pair per line, that
identify connected nodes. Ordering of the pairs is irrelevant; 1 2 and 2
1 specify the same connection. All node numbers will range from 1 to
1000. A line containing a single zero ends the list of connected nodes.
An empty network description flags the end of the input. Blank lines in
the input file should be ignored.
Output
The first network in the file should be identified as "Network #1",
the second as "Network #2", etc. For each SPF node, output a line,
formatted as shown in the examples below, that identifies the node and
the number of fully connected subnets that remain when that node fails.
If the network has no SPF nodes, simply output the text "No SPF nodes"
instead of a list of SPF nodes.
Sample Input
1 2
5 4
3 1
3 2
3 4
3 5
0 1 2
2 3
3 4
4 5
5 1
0 1 2
2 3
3 4
4 6
6 3
2 5
5 1
0 0
Sample Output
Network #1
SPF node 3 leaves 2 subnets Network #2
No SPF nodes Network #3
SPF node 2 leaves 2 subnets
SPF node 3 leaves 2 subnets
#include <iostream>
#include <cstring>
#include <cstdio>
#include <algorithm>
#include <cmath>
#include <string>
#include <map>
#include <queue>
#include <vector>
#define inf 0x7fffffff
#define met(a,b) memset(a,b,sizeof a)
typedef long long ll;
using namespace std;
const int N = ;
const int M = ; int edg[N][N],vis[N];
int nodes,tmpdfn,son;
int dfn[N],low[N],subnets[N];
void init()
{
low[]=dfn[]=;
tmpdfn=;son=;
met(vis,);met(subnets,);
vis[]=;
}
void Tarjan(int u)
{
for(int v=;v<=nodes;v++){
if(edg[u][v]){
if(!vis[v]){
vis[v]=;
dfn[v]=low[v]=++tmpdfn;
Tarjan(v);
low[u]=min(low[u],low[v]);
if(low[v]>=dfn[u]){
if(u!=)subnets[u]++;
else son++;
}
}
else low[u]=min(low[u],dfn[v]);
}
}
}
int main()
{
int u,v,num=;
while(~scanf("%d",&u)&&u){
met(edg,);nodes=;
scanf("%d",&v);
nodes=max(max(u,v),nodes);
edg[u][v]=edg[v][u]=;
while(){
scanf("%d",&u);
if(!u)break;
scanf("%d",&v);
nodes=max(max(u,v),nodes);
edg[u][v]=edg[v][u]=;
}
if(num>)printf("\n");
printf("Network #%d\n",num);num++;
init();
Tarjan();
if(son>)subnets[]=son-;
bool find=false;
for(int i=;i<=nodes;i++){
if(subnets[i]){
find=true;printf(" SPF node %d leaves %d subnets\n",i,subnets[i]+);
}
}
if(!find)printf(" No SPF nodes\n");
}
return ;
}
POJ 1523 SPF(寻找关节点)的更多相关文章
- poj 1523 SPF(双连通分量割点模板)
题目链接:http://poj.org/problem?id=1523 题意:给出无向图的若干条边,求割点以及各个删掉其中一个割点后将图分为几块. 题目分析:割点用tarjan算法求出来,对于每个割点 ...
- zoj 1119 / poj 1523 SPF (典型例题 求割点 Tarjan 算法)
poj : http://poj.org/problem?id=1523 如果无向图中一个点 u 为割点 则u 或者是具有两个及以上子女的深度优先生成树的根,或者虽然不是一个根,但是它有一个子女 w, ...
- POJ 1523 SPF 割点与桥的推断算法-Tarjan
题目链接: POJ1523 题意: 问一个连通的网络中有多少个关节点,这些关节点分别能把网络分成几部分 题解: Tarjan 算法模板题 顺序遍历整个图,能够得到一棵生成树: 树边:可理解为在DFS过 ...
- POJ 1523 SPF tarjan求割点
SPF Time Limit: 1000MS Memory Limit ...
- POJ 1523 SPF(求割点)
题目链接 题意 : 找出图中所有的割点,然后输出删掉他们之后还剩多少个连通分量. 思路 : v与u邻接,要么v是u的孩子,要么u是v的祖先,(u,v)构成一条回边. //poj1523 #includ ...
- POJ 1523 SPF (割点,连通分量)
题意:给出一个网络(不一定连通),求所有的割点,以及割点可以切分出多少个连通分量. 思路:很多种情况. (1)如果给的图已经不是连通图,直接“ No SPF nodes”. (2)求所有割点应该不难 ...
- zoj 1119 /poj 1523 SPF
题目描述:考虑图8.9中的两个网络,假定网络中的数据只在有线路直接连接的2个结点之间以点对点的方式传输.一个结点出现故障,比如图(a)所示的网络中结点3出现故障,将会阻止其他某些结点之间的通信.结点1 ...
- POJ - 1523 SPF
题目要求割顶集,并且还要求出去掉割顶之后剩下的图连通数目. tarjan算法求出割顶后直接枚举就可以了吧. 一开始想到利用iscut[u]的次数也就是点u被判定为割顶的次数求连通分量数,还有利用与结点 ...
- poj 1523 SPF【点双连通求去掉割点后bcc个数】
SPF Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 7246 Accepted: 3302 Description C ...
随机推荐
- jQuery对表单元素的取值和赋值操作代码
使用常规的思路:$(“#keyword”).value 取值是取不到的,因为此时$(‘#keydord’)已经不是个element,而是个jquery对象,所以应该使用:$(“#keyword”).v ...
- xlistview的(java)
package com.bwie.xlistviews; import java.text.SimpleDateFormat;import java.util.Date; import com.bwi ...
- Linear Predictors
In this chapter we will study the family of linear predictors, one of the most useful families of hy ...
- python——周边
Pythonic的禅意 import this python是用c语言写的.传说python不止有C语言实现,还有java实现,还有python实现的python,甚至还有js实现的python. p ...
- Javascript基础--类与对象(五)
js面向(基于)对象编程1.澄清概念 1.1 js中基于对象 == js 面向对象 1.2 js中没有类class,但是它取了一个新的名字,交原型对象,因此 类 = 原型对象. 2.为什么需要对象? ...
- UVa 10318 Security Panel
题意:给你一个3*3的翻转模版,深色部分表示翻转,浅色部分不变.然后你可以在r*c的矩形里依照模版进行翻转,要求所有点亮所有块.输出最小的步骤. 思路:有一点比较好想.每个块至多被翻转一次,翻两次的效 ...
- 加载不同的nib文件
只需要实现nibName方法即可 另外还需在vc控制器初始化的时候不指定对应的nib文件名 -(NSString *)nibName { if(UI_USER_INTERFACE_IDIOM() == ...
- [转]dev C++编写windows程序遇到问题
1.工具-编译选项-编译器-在连接器命令行加入以下命令: -mwindows 2.出现错误:undefined reference to `PlaySoundA@12' 解决办法:工具-编译选项-编译 ...
- (spring-第8回【IoC基础篇】)BeanDefinition在IoC容器中的注册
在spring中,所有的bean都是由BeanFactory进行管理的.下面是BeanFactory的类体系结构: 我们清楚的看到,DefaultListableBeanFactory继承了BeanF ...
- PHP图像处理之画图
PHP图像处理 画图 验证码,统计图 安装GD库-----LAMP 安装后在D:\APMServ5.2.6\PHP\ext文件中有php_gd2.dll文件 ...