1009: [HNOI2008]GT考试

Time Limit: 1 Sec  Memory Limit: 162 MB
Submit: 3018  Solved: 1856
[Submit][Status][Discuss]

Description

  阿申准备报名参加GT考试,准考证号为N位数X1X2....Xn(0<=Xi<=9),他不希望准考证号上出现不吉利的数字。
他的不吉利数学A1A2...Am(0<=Ai<=9)有M位,不出现是指X1X2...Xn中没有恰好一段等于A1A2...Am. A1和X1可以为
0

Input

  第一行输入N,M,K.接下来一行输入M位的数。 N<=10^9,M<=20,K<=1000

Output

  阿申想知道不出现不吉利数字的号码有多少种,输出模K取余的结果.

Sample Input

4 3 100
111

Sample Output

81
 
 
【题解】
动态规划啊,但数据这么大怎么想得到是动态规划呢,太弱了......
f[i][j]表示准考证前i位中后j位为不吉利的数字的前j位。
转移方程:
     
 

因此就可以使用矩阵乘法加速了!

a[k][j]表示f[i-1][k]转为f[i][j]的方法数,这步可以用KMP解决。

ans+=f[0][j] (j=0;j<m;++j);

——转自怡红公子
这题看了一个晚上的题解,然而关于a矩阵的求法还不是太懂,希望大神指教。
===========================================
2016.11.1更新:
A掉2道 AC自动机+矩阵乘法后,这道题就彻底理解了。
代码中的b矩阵表示转移的路径数,然后自乘n次,就相当于是转移n次的路径数。
这个和邻接矩阵的自乘原理是一样的。(floyd)
 #include<iostream>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<cmath>
#include<ctime>
#include<algorithm>
using namespace std;
int n,m,mod,p[],a[][],b[][];
char ch[];
inline int read()
{
int x=,f=; char ch=getchar();
while(!isdigit(ch)) {if(ch=='-') f=-; ch=getchar();}
while(isdigit(ch)) {x=x*+ch-''; ch=getchar();}
return x*f;
}
void mul(int a[][],int b[][],int ans[][])
{
int temp[][];
for(int i=;i<m;i++)
for(int j=;j<m;j++)
{
temp[i][j]=;
for(int k=;k<m;k++)
temp[i][j]=(temp[i][j]+a[i][k]*b[k][j])%mod;
}
for(int i=;i<m;i++)
for(int j=;j<m;j++)
ans[i][j]=temp[i][j];
}
int main()
{
n=read(); m=read(); mod=read();
scanf("%s",ch+);
int j=;
for(int i=;i<=m;i++)
{
while(j>&&ch[j+]!=ch[i]) j=p[j];
if(ch[j+]==ch[i]) j++;
p[i]=j;
}
for(int i=;i<m;i++)
for(int j=;j<=;j++)
{
int t=i;
while(t>&&ch[t+]-''!=j) t=p[t];
if(ch[t+]-''==j) t++;
if(t!=m) b[t][i]=(b[t][i]+)%mod;
}
for(int i=;i<m;i++) a[i][i]=;
while(n)
{
if(n&) mul(a,b,a);
mul(b,b,b);
n/=;
}
int sum=;
for(int i=;i<m;i++)
sum=(sum+a[i][])%mod;
printf("%d",sum);
return ;
}
 
 

【bzoj1009】[HNOI2008]GT考试的更多相关文章

  1. [BZOJ1009] [HNOI2008] GT考试(KMP+dp+矩阵快速幂)

    [BZOJ1009] [HNOI2008] GT考试(KMP+dp+矩阵快速幂) 题面 阿申准备报名参加GT考试,准考证号为N位数X1X2-.Xn,他不希望准考证号上出现不吉利的数字.他的不吉利数学A ...

  2. BZOJ1009 [HNOI2008]GT考试 矩阵

    去博客园看该题解 题目 [bzoj1009][HNOI2008]GT考试 Description 阿申准备报名参加GT考试,准考证号为N位数X1X2….Xn(0<=Xi<=9),他不希望准 ...

  3. bzoj1009 [HNOI2008] GT考试 矩阵乘法+dp+kmp

    1009: [HNOI2008]GT考试 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 4542  Solved: 2815[Submit][Statu ...

  4. [Bzoj1009][HNOI2008]GT考试(KMP)(矩乘优化DP)

    1009: [HNOI2008]GT考试 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 4309  Solved: 2640[Submit][Statu ...

  5. bzoj1009: [HNOI2008]GT考试(kmp+矩阵乘法)

    1009: [HNOI2008]GT考试 题目:传送门 题解: 看这第一眼是不是瞬间想起组合数学??? 没错...这样想你就GG了! 其实这是一道稍有隐藏的矩阵乘法,好题! 首先我们可以简化一下题意: ...

  6. [bzoj1009](HNOI2008)GT考试 (kmp+矩阵快速幂加速递推)

    Description 阿 申准备报名参加GT考试,准考证号为N位数X1X2....Xn(0<=Xi<=9),他不希望准考证号上出现不吉利的数字.他的不吉利数学 A1A2...Am(0&l ...

  7. [bzoj1009][HNOI2008]GT考试

    Description 阿申准备报名参加考试,准考证号为位数,他不希望准考证号上出现不吉利的数字. 他的不吉利数学有位,不出现是指中没有恰好一段等于. 可以为. Input 第一行输入.接下来一行输入 ...

  8. [BZOJ1009] [HNOI2008] GT考试 (KMP & dp & 矩阵乘法)

    Description 阿申准备报名参加GT考试,准考证号为N位数X1X2....Xn(0<=Xi<=9),他不希望准考证号上出现不吉利的数字. 他的不吉利数学A1A2...Am(0< ...

  9. bzoj1009: [HNOI2008]GT考试 ac自动机+矩阵快速幂

    https://www.lydsy.com/JudgeOnline/problem.php?id=1009 阿申准备报名参加GT考试,准考证号为N位数X1X2....Xn(0<=Xi<=9 ...

  10. BZOJ1009:[HNOI2008]GT考试(AC自动机,矩乘DP)

    Description 阿申准备报名参加GT考试,准考证号为N位数X1X2....Xn(0<=Xi<=9),他不希望准考证号上出现不吉利的数字. 他的不吉利数学A1A2...Am(0< ...

随机推荐

  1. PHP,Mysql-根据一个给定经纬度的点,进行附近地点查询–合理利用算法,效率提高2125倍

    目前的工作是需要对用户的一些数据进行分析,每个用户都有若干条记录,每条记录中有用户的一个位置,是用经度和纬度表示的.还有一个给定的数据库,存储的是一些已知地点以及他们的经纬度,内有43W多条的数据.现 ...

  2. 一款点击图片进行无限循环的jquery手风琴特效

    一款点击图片进行无限循环的jquery手风琴特效,点击手风琴折合点,可以无限循环的点击下去,很炫酷的手风琴哟! 还有每张图片的文字介绍,因为兼容IE6所以找来分享给大家这个jquery特效. 适用浏览 ...

  3. 自定义Toast的显示效果

    Activity: package com.example.editortoast; import android.app.Activity; import android.os.Bundle; im ...

  4. 关于datagridview的一些操作

    1.绑定datatable时,会显示出不需要显示的列可以加datagridview.AutoGenerateColumns = false; 2.如果datagridview的某列是数值型的,有小数, ...

  5. 'mysql.column_stats' doesn't exist and Table 'mysql.index_stats' doesn't exist

    在生产库MariabDB中修改字段类型,提示如下错误:​Table 'mysql.column_stats' doesn't existTable 'mysql.index_stats' doesn' ...

  6. Oracle DBLINK 抽数以及DDL、DML操作

    DB :  11.2.0.3.0 原库实例orcl:SQL> select instance_name from v$instance; INSTANCE_NAME--------------- ...

  7. 关于生成缩略图及水印图片时出现GDI+中发生一般性错误解决方法

    System.Drawing.Image OldImage = null; oldImage = System.Drawing.Image.FromFile(ImageUrl); 使用该方法读取图片时 ...

  8. DTW

    DTW主要是应用在孤立词识别的算法,用来识别一些特定的指令比较好用,这个算法是基于DP(动态规划)的算法基础上发展而来的.这里介绍语音识别就先介绍下语音识别的框架,首先我们要有一个比对的模版声音,然后 ...

  9. Java并发编程实战---第六章:任务执行

    废话开篇 今天开始学习Java并发编程实战,很多大牛都推荐,所以为了能在并发编程的道路上留下点书本上的知识,所以也就有了这篇博文.今天主要学习的是任务执行章节,主要讲了任务执行定义.Executor. ...

  10. DeviceOne开发HelloWord

    http://www.cnblogs.com/wjiaonianhua/p/5278061.html http://www.jb51.net/article/75693.htm 2015 年 9 月 ...