点击打开链接

Numbers That Count
Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 17922   Accepted: 5940

Description

"Kronecker's Knumbers" is a little company that manufactures plastic digits for use in signs (theater marquees, gas station price displays, and so on). The owner and sole employee, Klyde Kronecker, keeps track of how many digits of each type he has used by
maintaining an inventory book. For instance, if he has just made a sign containing the telephone number "5553141", he'll write down the number "5553141" in one column of his book, and in the next column he'll list how many of each digit he used: two 1s, one
3, one 4, and three 5s. (Digits that don't get used don't appear in the inventory.) He writes the inventory in condensed form, like this: "21131435". 



The other day, Klyde filled an order for the number 31123314 and was amazed to discover that the inventory of this number is the same as the number---it has three 1s, one 2, three 3s, and one 4! He calls this an example of a "self-inventorying number", and
now he wants to find out which numbers are self-inventorying, or lead to a self-inventorying number through iterated application of the inventorying operation described below. You have been hired to help him in his investigations. 



Given any non-negative integer n, its inventory is another integer consisting of a concatenation of integers c1 d1 c2 d2 ... ck dk , where each ci and di is an unsigned integer, every ci is positive, the di satisfy 0<=d1<d2<...<dk<=9, and, for each digit d
that appears anywhere in n, d equals di for some i and d occurs exactly ci times in the decimal representation of n. For instance, to compute the inventory of 5553141 we set c1 = 2, d1 = 1, c2 = 1, d2 = 3, etc., giving 21131435. The number 1000000000000 has
inventory 12011 ("twelve 0s, one 1"). 



An integer n is called self-inventorying if n equals its inventory. It is called self-inventorying after j steps (j>=1) if j is the smallest number such that the value of the j-th iterative application of the inventory function is self-inventorying. For instance,
21221314 is self-inventorying after 2 steps, since the inventory of 21221314 is 31321314, the inventory of 31321314 is 31123314, and 31123314 is self-inventorying. 



Finally, n enters an inventory loop of length k (k>=2) if k is the smallest number such that for some integer j (j>=0), the value of the j-th iterative application of the inventory function is the same as the value of the (j + k)-th iterative application. For
instance, 314213241519 enters an inventory loop of length 2, since the inventory of 314213241519 is 412223241519 and the inventory of 412223241519 is 314213241519, the original number (we have j = 0 in this case). 



Write a program that will read a sequence of non-negative integers and, for each input value, state whether it is self-inventorying, self-inventorying after j steps, enters an inventory loop of length k, or has none of these properties after 15 iterative applications
of the inventory function.

Input

A sequence of non-negative integers, each having at most 80 digits, followed by the terminating value -1. There are no extra leading zeros.

Output

For each non-negative input value n, output the appropriate choice from among the following messages (where n is the input value, j is a positive integer, and k is a positive integer greater than 1): 

n is self-inventorying 

n is self-inventorying after j steps 

n enters an inventory loop of length k 

n can not be classified after 15 iterations

Sample Input

22
31123314
314213241519
21221314
111222234459
-1

Sample Output

22 is self-inventorying
31123314 is self-inventorying
314213241519 enters an inventory loop of length 2
21221314 is self-inventorying after 2 steps
111222234459 enters an inventory loop of length 2

题目大意:给一个大数,问我们经过多少次操作以后可以得到一个循环,操作的方法就是统计这个数中由小到大的数字出现的次数,然后写成  (数字1出现次数)1(数字2出现次数)2这样的形式,没有这个数字就不写。

问经过多少次操作可以出现循环,。循环的结果有4种:

1、本身就是一个循环,就是说数字a操作一个还是数字a : a->a->a->a

2、经过n步以后变成条件1的情况:a->b->c->c->c->c->c

3、经过n步以后构成了一个环:a->b->c->a->b->c

4、经过15次操作依然没出现以上3种情况

题目就是一个模拟题,不过判重我用了一个map把字符串映射一个数字,但速度很慢 200+ms,后来看了别人的思路,就是存在一个字符串数组里顺序比较就行了,效率很高32MS,看来是我想太多了。。。。

#include<stdio.h>
#include<map>
#include<string>
#include<string.h>
#include<iostream>
using namespace std;
string solve(string str)
{
int i;
int hash[10] = {0};
int len = str.length();
for(i = 0; i < len; i++)
{
hash[str[i] - '0'] ++;
}
string new_str;
char ch[30] = {0};
for(i = 0; i < 10; i++)
{
if(hash[i] != 0)
{
sprintf(ch, "%d%d", hash[i], i);
new_str.append(ch); }
}
return new_str;
}
int main()
{
// freopen("in.txt", "r", stdin);
string s;
while(cin >> s)
{
if(s == "-1")
break;
map<string, int> mymap;
mymap[s] = 0;
string new_str = s, prev;
int i;
int flag = 0;
for(i = 1; i < 16; i++)
{
prev = new_str;
new_str = solve(new_str);
if(prev == new_str)
{
flag = 1;
break;
}
if(mymap[new_str] != 0)
{
flag = i - mymap[new_str];
break;
}
else
mymap[new_str] = i;
}
if(i == 1)
cout << s << " is self-inventorying" << endl;
else if(i < 16)
{
if(flag == 1)
cout << s << " is self-inventorying after " << i - 1 << " steps" << endl;
else
cout << s << " enters an inventory loop of length " << flag << endl;
}
else
cout << s << " can not be classified after 15 iterations" << endl;
}
return 0;
}

poj 1016 Numbers That Count的更多相关文章

  1. POJ 1016 Numbers That Count 不难,但要注意细节

    题意是将一串数字转换成另一种形式.比如5553141转换成2个1,1个3,1个4,3个5,即21131435.1000000000000转换成12011.数字的个数是可能超过9个的.n个m,m是从小到 ...

  2. POJ1016 Numbers That Count

    题目来源:http://poj.org/problem?id=1016 题目大意: 对一个非负整数定义一种运算(inventory):数这个数中各个数字出现的次数,然后按顺序记录下来.比如“55531 ...

  3. POJ 1016 模拟字符串

    Numbers That Count Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 20396   Accepted: 68 ...

  4. Numbers That Count POJ - 1016

    "Kronecker's Knumbers" is a little company that manufactures plastic digits for use in sig ...

  5. POJ 1016

    http://poj.org/problem?id=1016 一道字符串处理的题目,理解题意后注意细节就好. 题意:每一串数字 都可以写成 a1 b1 a2 b2 ....ai bi 其中ai是指bi ...

  6. B - Numbers That Count

    Description        "Kronecker's Knumbers" is a little company that manufactures plastic di ...

  7. poj Pseudoprime numbers 3641

    Pseudoprime numbers Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 10903   Accepted: 4 ...

  8. POJ Round Numbers(数位DP)

    题目大意: Round Number:  将一个整数转化为二进制数字后,(不含前导0) 要是0的个数 大于等于1的个数 则是 Round Number 问从L-R之中有多少个Round Number ...

  9. POJ Pseudoprime numbers( Miller-Rabin素数测试 )

    链接:传送门 题意:题目给出费马小定理:Fermat's theorem states that for any prime number p and for any integer a > 1 ...

随机推荐

  1. 编写使用SpringSecurity的JUnit测试提醒

    近日在使用SpringSecurity的项目中发现一个小问题,就是在接口上加了@Secured标注限制调用接口权限时,某些JUnit无法正常调用了. 例如: @Secured(PrivilegeDAO ...

  2. linux更改启动级别后,无法启动的问题解决

    装好之后,配置好IP,启动后也能上网了,然后我修改了系统的启动级别(默认为3,我改为了5),意思是让他能够启动桌面. 我是这么设置的: 1.vi命令打开/etc/inittab文件,可以看到如下描述 ...

  3. SharePoint 2010 最佳实践学习总结------第2章 SharePoint Windows PowerShell指南

    第2章 SharePoint Windows PowerShell指南 SharePoint 2010是SharePoint系列产品中第一个开始支持Windows PowerShell的产品,在以前的 ...

  4. isa class 帮助确定对象或变量的数据类型

    isa class 帮助确定对象或变量的数据类型

  5. 迁移学习(Transfer Learning)(转载)

    原文地址:http://blog.csdn.net/miscclp/article/details/6339456 在传统的机器学习的框架下,学习的任务就是在给定充分训练数据的基础上来学习一个分类模型 ...

  6. (XAML)"XXXX" does not exist in the namespace "clr-

    Error 139 Assembly 'System.Activities.Core.Presentation' was not found. Verify that you are not miss ...

  7. [Java Web – Maven – 1A]maven 3.3.3 for windows 配置(转)

    1.环境 系统环境:windows 2008 R2 JDK VERSION: 1.7.0_10 2.下载地址 MAVEN 下载地址:http://maven.apache.org/download.c ...

  8. Objective-C语法汇总

    1.方法前的加减号 Objective-C中是没有public与private的概念的,即可以认为全部都是public.减号表示的是一个函数.方法.消息的开始.加号则表示不需要创建一个类的实例,其他类 ...

  9. DBA_Oracle Erp R12中文补丁安装升级(案例)

    2014-07-11 Created By BaoXinjian

  10. NYOJ16 矩形嵌套(DAG最长路)

    矩形嵌套 紫书P262 这是有向无环图DAG(Directed Acyclic Graph)上的动态规划,是DAG最长路问题 [题目链接]NYOJ16-矩形嵌套 [题目类型]DAG上的dp & ...