点击打开链接

Numbers That Count
Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 17922   Accepted: 5940

Description

"Kronecker's Knumbers" is a little company that manufactures plastic digits for use in signs (theater marquees, gas station price displays, and so on). The owner and sole employee, Klyde Kronecker, keeps track of how many digits of each type he has used by
maintaining an inventory book. For instance, if he has just made a sign containing the telephone number "5553141", he'll write down the number "5553141" in one column of his book, and in the next column he'll list how many of each digit he used: two 1s, one
3, one 4, and three 5s. (Digits that don't get used don't appear in the inventory.) He writes the inventory in condensed form, like this: "21131435". 



The other day, Klyde filled an order for the number 31123314 and was amazed to discover that the inventory of this number is the same as the number---it has three 1s, one 2, three 3s, and one 4! He calls this an example of a "self-inventorying number", and
now he wants to find out which numbers are self-inventorying, or lead to a self-inventorying number through iterated application of the inventorying operation described below. You have been hired to help him in his investigations. 



Given any non-negative integer n, its inventory is another integer consisting of a concatenation of integers c1 d1 c2 d2 ... ck dk , where each ci and di is an unsigned integer, every ci is positive, the di satisfy 0<=d1<d2<...<dk<=9, and, for each digit d
that appears anywhere in n, d equals di for some i and d occurs exactly ci times in the decimal representation of n. For instance, to compute the inventory of 5553141 we set c1 = 2, d1 = 1, c2 = 1, d2 = 3, etc., giving 21131435. The number 1000000000000 has
inventory 12011 ("twelve 0s, one 1"). 



An integer n is called self-inventorying if n equals its inventory. It is called self-inventorying after j steps (j>=1) if j is the smallest number such that the value of the j-th iterative application of the inventory function is self-inventorying. For instance,
21221314 is self-inventorying after 2 steps, since the inventory of 21221314 is 31321314, the inventory of 31321314 is 31123314, and 31123314 is self-inventorying. 



Finally, n enters an inventory loop of length k (k>=2) if k is the smallest number such that for some integer j (j>=0), the value of the j-th iterative application of the inventory function is the same as the value of the (j + k)-th iterative application. For
instance, 314213241519 enters an inventory loop of length 2, since the inventory of 314213241519 is 412223241519 and the inventory of 412223241519 is 314213241519, the original number (we have j = 0 in this case). 



Write a program that will read a sequence of non-negative integers and, for each input value, state whether it is self-inventorying, self-inventorying after j steps, enters an inventory loop of length k, or has none of these properties after 15 iterative applications
of the inventory function.

Input

A sequence of non-negative integers, each having at most 80 digits, followed by the terminating value -1. There are no extra leading zeros.

Output

For each non-negative input value n, output the appropriate choice from among the following messages (where n is the input value, j is a positive integer, and k is a positive integer greater than 1): 

n is self-inventorying 

n is self-inventorying after j steps 

n enters an inventory loop of length k 

n can not be classified after 15 iterations

Sample Input

22
31123314
314213241519
21221314
111222234459
-1

Sample Output

22 is self-inventorying
31123314 is self-inventorying
314213241519 enters an inventory loop of length 2
21221314 is self-inventorying after 2 steps
111222234459 enters an inventory loop of length 2

题目大意:给一个大数,问我们经过多少次操作以后可以得到一个循环,操作的方法就是统计这个数中由小到大的数字出现的次数,然后写成  (数字1出现次数)1(数字2出现次数)2这样的形式,没有这个数字就不写。

问经过多少次操作可以出现循环,。循环的结果有4种:

1、本身就是一个循环,就是说数字a操作一个还是数字a : a->a->a->a

2、经过n步以后变成条件1的情况:a->b->c->c->c->c->c

3、经过n步以后构成了一个环:a->b->c->a->b->c

4、经过15次操作依然没出现以上3种情况

题目就是一个模拟题,不过判重我用了一个map把字符串映射一个数字,但速度很慢 200+ms,后来看了别人的思路,就是存在一个字符串数组里顺序比较就行了,效率很高32MS,看来是我想太多了。。。。

#include<stdio.h>
#include<map>
#include<string>
#include<string.h>
#include<iostream>
using namespace std;
string solve(string str)
{
int i;
int hash[10] = {0};
int len = str.length();
for(i = 0; i < len; i++)
{
hash[str[i] - '0'] ++;
}
string new_str;
char ch[30] = {0};
for(i = 0; i < 10; i++)
{
if(hash[i] != 0)
{
sprintf(ch, "%d%d", hash[i], i);
new_str.append(ch); }
}
return new_str;
}
int main()
{
// freopen("in.txt", "r", stdin);
string s;
while(cin >> s)
{
if(s == "-1")
break;
map<string, int> mymap;
mymap[s] = 0;
string new_str = s, prev;
int i;
int flag = 0;
for(i = 1; i < 16; i++)
{
prev = new_str;
new_str = solve(new_str);
if(prev == new_str)
{
flag = 1;
break;
}
if(mymap[new_str] != 0)
{
flag = i - mymap[new_str];
break;
}
else
mymap[new_str] = i;
}
if(i == 1)
cout << s << " is self-inventorying" << endl;
else if(i < 16)
{
if(flag == 1)
cout << s << " is self-inventorying after " << i - 1 << " steps" << endl;
else
cout << s << " enters an inventory loop of length " << flag << endl;
}
else
cout << s << " can not be classified after 15 iterations" << endl;
}
return 0;
}

poj 1016 Numbers That Count的更多相关文章

  1. POJ 1016 Numbers That Count 不难,但要注意细节

    题意是将一串数字转换成另一种形式.比如5553141转换成2个1,1个3,1个4,3个5,即21131435.1000000000000转换成12011.数字的个数是可能超过9个的.n个m,m是从小到 ...

  2. POJ1016 Numbers That Count

    题目来源:http://poj.org/problem?id=1016 题目大意: 对一个非负整数定义一种运算(inventory):数这个数中各个数字出现的次数,然后按顺序记录下来.比如“55531 ...

  3. POJ 1016 模拟字符串

    Numbers That Count Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 20396   Accepted: 68 ...

  4. Numbers That Count POJ - 1016

    "Kronecker's Knumbers" is a little company that manufactures plastic digits for use in sig ...

  5. POJ 1016

    http://poj.org/problem?id=1016 一道字符串处理的题目,理解题意后注意细节就好. 题意:每一串数字 都可以写成 a1 b1 a2 b2 ....ai bi 其中ai是指bi ...

  6. B - Numbers That Count

    Description        "Kronecker's Knumbers" is a little company that manufactures plastic di ...

  7. poj Pseudoprime numbers 3641

    Pseudoprime numbers Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 10903   Accepted: 4 ...

  8. POJ Round Numbers(数位DP)

    题目大意: Round Number:  将一个整数转化为二进制数字后,(不含前导0) 要是0的个数 大于等于1的个数 则是 Round Number 问从L-R之中有多少个Round Number ...

  9. POJ Pseudoprime numbers( Miller-Rabin素数测试 )

    链接:传送门 题意:题目给出费马小定理:Fermat's theorem states that for any prime number p and for any integer a > 1 ...

随机推荐

  1. xml学习笔记二(规则)

    XML 的语法规则很简单,且很有逻辑.这些规则很容易学习,也很容易使用. 所有 XML 元素都须有关闭标签 在 HTML,经常会看到没有关闭标签的元素: <p>This is a para ...

  2. ASP.NET MVC 中的ViewData与ViewBag

    在Asp.net MVC 3 web应用程序中,我们会用到ViewData与ViewBag,对比一下: ViewData ViewBag 它是Key/Value字典集合 它是dynamic类型对像 从 ...

  3. 用Filter解决乱码和jsp缓存问题

    1) 乱码Filter: 新建一个:CharSetFilter package com.my.filter; import java.io.*; import javax.servlet.*; imp ...

  4. JS使用百度地图API

    尚未整理: <script type="text/javascript"> var map = new BMap.Map("dituContent" ...

  5. Javascript中函数的四种调用方式

    一.Javascript中函数的几个基本知识点: 1.函数的名字只是一个指向函数的指针,所以即使在不同的执行环境,即不同对象调用这个函数,这个函数指向的仍然是同一个函数. 2.函数中有两个特殊的内部属 ...

  6. LVS包转发模型和调度算法(转)

    LVS简介 Internet的快速增长使多媒体网络服务器面对的访问数量快速增加,服务器需要具备提供大量并发访问服务的能力,因此对于大负载的服务器来 讲, CPU.I/O处理能力很快会成为瓶颈.由于单台 ...

  7. Learning Puppet — Resources and the RAL

    Learning Puppet — Resources and the RAL Welcome to Learning Puppet! This series covers the basics of ...

  8. android学习笔记19——对话框(DatePickerDialog、TimePickerDialog)

    DatePickerDialog.TimePickerDialog ==> DatePickerDialog.TimePickerDialog功能.用法都比较简单,操作步骤: 1.通过new关键 ...

  9. [dts]Device Tree机制

    转自:http://blog.csdn.net/machiner1/article/details/47805069 ------------------Based on linux 3.10.24 ...

  10. activiti自定义流程之整合(四):整合自定义表单部署流程定义

    综合前几篇博文内容,我想在整合这一部分中应该会有很多模块会跳过不讲,就如自定义表单的表单列表那一块,因为这些模块在整合的过程中都几乎没有什么改动,再多讲也是重复无用功. 正因为如此,在创建了流程模型之 ...