Sum

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)

Problem Description
XXX is puzzled with the question below:
1, 2, 3, ..., n (1<=n<=400000) are placed in a line. There are m (1<=m<=1000) operations of two kinds.
Operation 1: among the x-th number to the y-th number (inclusive), get the sum of the numbers which are co-prime with p( 1 <=p <= 400000). Operation 2: change the x-th number to c( 1 <=c <= 400000).
For each operation, XXX will spend a lot of time to treat it. So he wants to ask you to help him.
 
Input
There are several test cases. The first line in the input is an integer indicating the number of test cases. For each case, the first line begins with two integers --- the above mentioned n and m. Each the following m lines contains an operation. Operation 1 is in this format: "1 x y p". Operation 2 is in this format: "2 x c".
 
Output
For each operation 1, output a single integer in one line representing the result.
 
Sample Input
1
3 3
2 2 3
1 1 3 4
1 2 3 6
 
Sample Output
7
0
 
Source
 
#include <iostream>
#include <stdio.h>
#include <queue>
#include <stdio.h>
#include <string.h>
#include <vector>
#include <queue>
#include <set>
#include <algorithm>
#include <map>
#include <stack>
#include <math.h>
#define Max(a,b) ((a)>(b)?(a):(b))
#define Min(a,b) ((a)<(b)?(a):(b))
using namespace std ;
typedef long long LL ;
const int M_P= ;
bool isprime[M_P+] ;
int prime[M_P] ,id ;
void make_prime(){
id= ;
memset(isprime,,sizeof(isprime)) ;
for(int i=;i<=M_P;i++){
if(!isprime[i])
prime[++id]=i ;
for(int j=;j<=id&&i*prime[j]<=M_P;i++){
isprime[i*prime[j]]= ;
if(i%prime[j]==)
break ;
}
}
}
int gcd(int x ,int y){
return y==?x:gcd(y,x%y) ;
}
struct Change{
int id ;
int num ;
};
vector<Change>query ;
inline LL Sum(LL N){
return N*(+N)/ ;
}
LL gao(int N ,int P){
vector<int>vec ;
vec.clear() ;
LL ans= ;
LL M=P ;
for(int i=;i<=id&&prime[i]*prime[i]<=M;i++){
if(M%prime[i]==){
vec.push_back(prime[i]) ;
while(M%prime[i]==)
M/=prime[i] ;
}
if(M==)
break ;
}
if(M!=)
vec.push_back(M) ;
int n=vec.size() ;
for(int i=;i<(<<n);i++){
int now= ;
int pri= ;
for(int j=;j<n;j++){
if(i&(<<j)){
now++ ;
pri*=vec[j] ;
}
}
if(now&)
ans=ans+pri*Sum(N/pri) ;
else
ans=ans-pri*Sum(N/pri) ;
}
return Sum(N)-ans ;
}
map<int ,int>my_hash ;
int main(){
make_prime() ;
int L ,R ,P ,N ,M ,T ,kind;
scanf("%d",&T) ;
while(T--){
scanf("%d%d",&N,&M) ;
query.clear() ;
while(M--){
scanf("%d",&kind) ;
if(kind==){
scanf("%d%d%d",&L,&R,&P) ;
if(L>R)
swap(L ,R) ;
LL ans=gao(R,P)-gao(L-,P) ;
my_hash.clear() ;
for(int i=;i<query.size();i++){
int ID=query[i].id ;
int Num=query[i].num ;
if(L<=ID&&ID<=R){
if(my_hash.find(ID)==my_hash.end()){
if(gcd(ID,P)==)
ans-=ID ;
}
else{
LL now_num = my_hash[ID] ;
if(gcd(now_num,P)==)
ans-=now_num ;
}
if(gcd(Num,P)==)
ans+=Num ;
my_hash[ID]=Num ;
}
}
printf("%I64d\n",ans) ;
}
else{
Change now ;
scanf("%d%d",&now.id,&now.num) ;
query.push_back(now) ;
}
}
}
return ;
}

HDU 4407 Sum 容斥原理的更多相关文章

  1. hdu 4407 Sum

    http://acm.hdu.edu.cn/showproblem.php?pid=4407 题意:给定初始n个数1..n,两个操作,①1 x y p  询问第x个数到第y个数中与p互质的数的和; ② ...

  2. HDU - 4407 Sum (容斥)

    题意:初始序列[1..N](1<=N<=4e5),支持两种操作:1.求区间[x,y]内与p互素的数之和: 2.将x位置的数变为c. 分析:很容易把人骗到线段树的思维中,而实际上操作2单点的 ...

  3. hdu 4407 Sum 容斥+当前离线

    乞讨X-Y之间p素数,,典型的纳入和排除问题,列的求和运算总和的数,注意,第一项是最后一个项目数. 如果不改变到第一记录的答案,脱机处理,能保存查询,候,遇到一个操作1,就遍历前面的操作.把改动加上去 ...

  4. HDOJ(HDU).1258 Sum It Up (DFS)

    HDOJ(HDU).1258 Sum It Up (DFS) [从零开始DFS(6)] 点我挑战题目 从零开始DFS HDOJ.1342 Lotto [从零开始DFS(0)] - DFS思想与框架/双 ...

  5. hdu 4407 容斥原理

    题意: 1 //一组数据 3 3 //数字为1-3,3次运算 2 2 3 //将2号位变成3 1 1 3 4 //计算1-3号位上与4互质的数的和 1 2 3 6 好题,需要重复练习 #include ...

  6. HDU 4407

    http://acm.hdu.edu.cn/showproblem.php?pid=4407 把修改和询问分成两部分解决 询问求区间内与p不互素的和,和求个数一样,用容斥原理解决,只不过做容斥的时候把 ...

  7. hdu 1258 Sum It Up(dfs+去重)

    题目大意: 给你一个总和(total)和一列(list)整数,共n个整数,要求用这些整数相加,使相加的结果等于total,找出所有不相同的拼凑方法. 例如,total = 4,n = 6,list = ...

  8. HDU 4135 Co-prime(容斥原理)

    Co-prime 第一发容斥,感觉挺有意思的 →_→ [题目链接]Co-prime [题目类型]容斥 &题意: 求(a,b)区间内,与n互质的数的个数. \(a,b\leq 10^{15}\) ...

  9. 数论 --- 费马小定理 + 快速幂 HDU 4704 Sum

    Sum Problem's Link:   http://acm.hdu.edu.cn/showproblem.php?pid=4704 Mean: 给定一个大整数N,求1到N中每个数的因式分解个数的 ...

随机推荐

  1. Ext JS 5的声明式事件监听

    在前文<在Ext JS 5使用ViewControllers>中,简单的介绍了Ext JS 5的一项重要改进——声明式事件监听.在本文,将深度探讨如何使用声明式事件监听啦简化应用程序的视图 ...

  2. 用JS获取DropDownList选中得值

    HTML: <asp:DropDownList ID="DropdownList1" runat="server" AutoPostBack=" ...

  3. bzoj4709 [jsoi2011]柠檬

    Description Flute 很喜欢柠檬.它准备了一串用树枝串起来的贝壳,打算用一种魔法把贝壳变成柠檬.贝壳一共有 N (1 ≤ N  ≤ 100,000) 只,按顺序串在树枝上.为了方便,我们 ...

  4. httpd安装

    1.软件准备 http://apache.fayea.com/apache-mirror//apr/apr-1.5.1.tar.gz http://apache.fayea.com/apache-mi ...

  5. php全角字符转换为半角函数

    <?php /** * 全角字符转换为半角 * * @param string $str * @return string public function Sbc2Dbc($str) { $ar ...

  6. 黄聪:wordpress源码解析-数据库表结构(转)

    如果是一个普通的用户,不需要了解wordpress数据库的结构.但是,如果你正在写一个插件,你应该会对wordpress如何处理它的数据和关系感兴趣.如果你已经尝试使用已经存在的wordpress a ...

  7. EntityFramework ,ef 介绍

    EntityFramework之领域驱动设计实践 分层架构 在引入实例以前,我们有必要回顾,并进一步了解分层架构.“层”是一种体系结构模式[POSA1],也是被广大软件从业人员用得最为广泛而且最为灵活 ...

  8. go与c++链接示例

    go lang与c/c++的链接示例: foo.hpp //foo.hpp #ifndef _FOO_HPP_ #define _FOO_HPP_ template<typename T> ...

  9. 小白也能用Git管理团队项目了:百度云同步+Git Extensions+Git Source Control Provider

    百度云同步 百度云同步,会将本地的某个文件目录和云端进行同步.如果在本地将这个同步的目录设置为Git的中心服务器,那么本地push到中心服务器的内容也会被同步到云端.其他开发者只要也进行相同的设置,就 ...

  10. Hibernae 的延迟加载

    http://blog.csdn.net/xc635960736/article/details/7049863 Hibernae 的延迟加载   Hibernae 的延迟加载是一个非常常用的技术,实 ...