1 前言

Caffe对于像我这样的初学者来说是一款非常容易上手的深度学习框架。关于用Caffe跑自己的数据这样的博客已经非常多,感谢前辈们为我们提供的这么好的学习资源。这里我主要结合我所在的行业,说下如何对跑通具有多通道多格式的遥感数据。

2 数据准备

Caffe封装的非常好,要想将我们的数据运用于Caffe上,我们唯一要做的工作就是准备好Caffe支持的数据输入格式(leveldb/lmdb)。

Caffe解决方案下有一个工程convert_imageset为我们提供了接口,主要是将图像文件转化为 Caffe支持的两种数据格式。工程实现数据格式转换主要经过以下几个步骤:

在细读这个工程文件是会发现,其数据读取函数用的是OpenCV 的imread函数,在io.cpp。关于OpenCV的imread函数,这里不做详细介绍,只说出其存在的问题:

1 对于图像文件,imread不能读取多波段数据(遥感图像),超过4个波段的;

2 读取的数据格式默认是CV_8UC(n),遥感数据明显不符合要求。

因此,要想通过Caffe自带的数据集转换接口将多波段多数据类型的遥感图像输出为Caffe支持的leveldb和lmdb格式存在明显的不合理问题。

关于遥感图像的读取,我想大家第一反应就是GDAL库。因此,我尝试在Caffe的解决方案下重写数据转换接口,利用GDAL库来读图像,并将读取的数据转换为OpenCV的Mat数据格式,从而和图1中流程的第二步接轨(GDAL数据读取转换为Mat格式可参看前面的博客)。但是后来一想,感觉这样做有点多余,为啥不通过GDAL读取的数据直接写入到Caffe::Datum中呢。

后来仔细看了Caffe::Datum类,发现其存储数据目前只支持uchar和float,如果读者愿意,我想还可以给Datum类添加其他的支持数据格式。但是,我觉得float格式已经满足我的要求了。因此,我写了一个简单的函数,实现从GDAL读取的数据到Datum的转化,其代码如下:

 bool ReadImageToDatum(const std::string &imgfilename,
const int label,
Datum &datum)
{
GDALAllRegister();
GDALDataset *poRemoteSensingImageDS = (GDALDataset*)GDALOpen(imgfilename.c_str(),GA_ReadOnly);
datum.set_channels(kRemoteSensingBandNums);
datum.set_height(kRemoteSensingSize);
datum.set_width(kRemoteSensingSize);
datum.set_label(label);
datum.clear_data();
datum.clear_float_data();
datum.set_encoded(false);
int *data = new int[kRemoteSensingImageNBytes];
int *pBandMap = new int[kRemoteSensingBandNums];
for (int b = ; b < kRemoteSensingBandNums; b++){
pBandMap[b] = b + ;
}
GDALDataType ty = poRemoteSensingImageDS->GetRasterBand()->GetRasterDataType();
poRemoteSensingImageDS->RasterIO(GF_Read, , , kRemoteSensingSize, kRemoteSensingSize,
data, kRemoteSensingSize, kRemoteSensingSize, ty, kRemoteSensingBandNums,
pBandMap, sizeof(int), kRemoteSensingSize*sizeof(int),
kRemoteSensingSize*kRemoteSensingSize*sizeof(int));
for (int i = ; i < kRemoteSensingImageNBytes; i++){
datum.add_float_data((float)data[i]);
}
delete[]data; data = nullptr;
delete[]pBandMap; pBandMap = nullptr;
GDALClose((GDALDatasetH)poRemoteSensingImageDS);
return ;
};

这里有个细节问题需要说下:因为我不大算动图1第三步中的Caffe::Datum--》leveldb/lmdb这个过程,所以GDAL读取的数据顺序需要与Mat中图像的存储格式一样。Mat默认数据存储格式是:BIP,及按像元保存,即先保存第一个波段的第一个像元,之后保存第二波段的第一个像元,依次保存存储。因此,在用GDAL读取图像的时候也应该用BIP格式读取,确保一致。到此遥感数据集的转换工作基本完成。我们可以将具有多波段和多数据类型的遥感数据顺利的保存为leveldb或者lmdb。我想其他的数据类型也可参考类似的方法。可以自己制作一个统一的二进制文件格式,然后轻松实现转换。

3 均值计算

这一步没有需要改动的地方,compute_image_mean 工程提供的接口完全可以支持之前Datum中的uchar和float两种数据格式。

     if (data.size() != ) {
CHECK_EQ(data.size(), size_in_datum);
for (int i = ; i < size_in_datum; ++i) {
sum_blob.set_data(i, sum_blob.data(i) + (uint8_t)data[i]);
}
} else {
CHECK_EQ(datum.float_data_size(), size_in_datum);
for (int i = ; i < size_in_datum; ++i) {
sum_blob.set_data(i, sum_blob.data(i) +
static_cast<float>(datum.float_data(i)));
}
}

4 模型训练

这个过程也没有需要改动的,设置好网络参数,利用Caffe.exe提供的接口就可以顺利的完成模型的训练工作。

5 分类

分类同样存在之前数据准备中出现的问题,因此,还是要重写classification工程,主要在于图像的读取部分,并将用GDAL读取的数据,转化为Mat的多通道数据。具体不说了,上传部分代码供大家参考:

            float *readPatchImage = new float[kRemoteSensingSize*kRemoteSensingSize*bandNums];
int leftX = colIndex - constWidth;
if (leftX + kRemoteSensingSize > width) leftX = width - kRemoteSensingSize - ;
poRemoteSensingImageDS->RasterIO(GF_Read, leftX, leftY, kRemoteSensingSize, kRemoteSensingSize,
readPatchImage, kRemoteSensingSize, kRemoteSensingSize, GDT_Float32, bandNums,
pBandMap, bandNums*sizeof(float), bandNums*kRemoteSensingSize*sizeof(float),sizeof(float));
cv::Mat img = cv::Mat(kRemoteSensingSize, kRemoteSensingSize, CV_32FC(bandNums), readPatchImage);
std::vector<Prediction> predictions = classifier.Classify(img);
if (predictions[].first == "")
{
std::cout << "-----Find Suspicious Chinmey: Probability:" << predictions[].second << std::endl;
std::cout << " Position:leftX:" << leftX << " leftY:" << leftY << std::endl;
std::cout << std::endl;
unsigned char* buf = new unsigned char[kRemoteSensingSize*kRemoteSensingSize];
int i = ;
while (i < kRemoteSensingSize*kRemoteSensingSize)
buf[i++] = ;
poOutBand->RasterIO(GF_Write, leftX, leftY, kRemoteSensingSize, kRemoteSensingSize, buf,
kRemoteSensingSize, kRemoteSensingSize, GDT_Byte, , );
delete[]buf; buf = nullptr; }
delete[]readPatchImage; readPatchImage = nullptr;
}

Windows下用Caffe跑自己的数据(遥感影像)的更多相关文章

  1. windows下检验caffe是否配置正确

    windows下检验caffe是否配置正确:(注:不考虑搭建caffe的编译环境,而是直接使用caffe官网提供的二进制文件) windows版本源码以及二进制库文件下载地址:https://gith ...

  2. EOFError: Compressed file ended before the end-of-stream marker was reached解决办法(在Windows下查看已下载的MNIST数据文件)

    出现这个问题的原因是因为文件下载到一半就中断了,解决办法是删除datasets中下载到一半的数据包. 下面以我遇到的问题为例: 我下载数据下载到最后一个包就没有反应了,于是我强制终止了运行,可能是因为 ...

  3. 用caffe跑自己的数据,基于WINDOWS的caffe

    本文详细介绍,如何用caffe跑自己的图像数据用于分类. 1 首先需要安装过程见 http://www.cnblogs.com/love6tao/p/5706830.html 同时依据上面教程,生成了 ...

  4. 实践详细篇-Windows下使用Caffe训练自己的Caffemodel数据集并进行图像分类

    三:使用Caffe训练Caffemodel并进行图像分类 上一篇记录的是如何使用别人训练好的MNIST数据做训练测试.上手操作一边后大致了解了配置文件属性.这一篇记录如何使用自己准备的图片素材做图像分 ...

  5. windows下配置caffe(环境:win7+vs2013+opencv3.0)

    说明:大部分转载于initialneil的大作Caffe + vs2013 + OpenCV in Windows Tutorial (I) – Setup 准备工作: 1.下载CUDA7.5: ht ...

  6. windows下使用ofstream默认输出内存数据到文件中时,会自动将0A换成0A0D

    0A即\n,而0D是\r,windows下换行是\n\r,因此会自动转换. 但是,这样会带来很大的问题,导致由内存写入文件中的数据和内存中不一样,还不知道是什么原因造成的. 特别是将从网络接收来的pn ...

  7. Windows下VS2013+Caffe无GPU配置

    Windows版本的caffe工具包下载地址: 点击打开链接 1. 将下载的caffe-master.zip解压到 D:\Software\Caffe 文件夹下,把 D:\Software\Caffe ...

  8. windows下编译caffe报错:error MSB4062: 未能从程序集 E:\NugetPackages\OpenCV.2.4.10\......的解决办法

    参考博客:http://blog.csdn.net/u013277656/article/details/75040459 在windows上编译caffe时,用vs打开后会自动加载还原NugetPa ...

  9. flink入门实例-Windows下本地模式跑SocketWordCount

    一般情况下,开发大数据处理程序,我们希望能够在本地编写代码并调试通过,能够在本地进行数据测试,然后在生产环境去跑“大”数据. 一.nc工具 配置windows的nc端口,在网上下载nc.exe(htt ...

随机推荐

  1. Android Design Support Library: 学习CoordinatorLayout

    简述 CoordinatorLayout字面意思是"协调器布局",它是Design Support Library中提供的一个超级帧布局,帮助我们实现Material Design ...

  2. OpenXml2.0 - 找不到类型或命名空间名称“DocumentFormat”

    在使用 OpenXml SDK2.0的过程中,很是郁闷的是总是报 '找不到类型或命名空间名称“SpreadsheetDocument”(是否缺少 using 指令或程序集引用?)'的错误,命名已经添加 ...

  3. VS2010发布网站的基本步骤

    1.首先建一个空文件夹,用来存放发布的程序:例如:WebTest 2.然后打开IIS--->右击--->添加网站,如下图所示: 图 1-1                          ...

  4. JS实现定时器(类似工行网银支付限时操作)

      js脚本内容: //5秒倒计时 var num = 0 ; var max = 5 ; var id = null ; id = setInterval(box , 1000) ; //1秒钟调用 ...

  5. LINUX的命令(未完待续)

    遇到忘了的Linux命令,复习之后,把它记在这里,供以后复习. ^C:刚开始在看视频的时候发现上面有cd ^C,还以为这是个什么命令,其实^C这不是输入进去的,当你按了Ctrl+C之后就会出现^C,C ...

  6. MyBatis错误--Invalid bound statement (not found)

    今天在开发项目的时候使用MyBatis发生错误:Invalid bound statement (not found) 具体错误信息: org.springframework.beans.factor ...

  7. Objective-C中单例模式的实现-备

    单例模式在Cocoa和Cocoa Touch中非常常见.比如这两个,[UIApplication sharedApplication]和[NSApplication sharedApplication ...

  8. Selenium IDE测试

    判断WEB程序是否能打开页面,并且打开了正确的页面,可以通过 assertTitle和assertLocation进行判断 并且这些操作不需要提供value. target就是期望的URL和页面标题, ...

  9. Sicily 1133. SPAM

    题目地址:1133. SPAM 思路: 题目意思是说在‘@’的前后出现题目给定的合法字符或者不连续出现‘.’字符的话,这个就是合理的输出. 那么以@为中心,向前,向后扫描,当扫描到不符合字符时,记录此 ...

  10. android 通过代码设置drawableLeft

    /** * * @desc 设置左边图标 * @param @param drw * @return void */ public void setAlertLeftIcon(Drawable drw ...