Paths on a Grid
Time Limit: 1000MS   Memory Limit: 30000K
Total Submissions: 23270   Accepted: 5735

Description

Imagine you are attending your math lesson at school. Once again, you are bored because your teacher tells things that you already mastered years ago (this time he's explaining that (a+b)2=a2+2ab+b2). So you decide to waste your time with drawing modern art instead.

Fortunately you have a piece of squared paper and you choose a rectangle of size n*m on the paper. Let's call this rectangle together with the lines it contains a grid. Starting at the lower left corner of the grid, you move your pencil to the upper right corner, taking care that it stays on the lines and moves only to the right or up. The result is shown on the left: 

Really a masterpiece, isn't it? Repeating the procedure one more time, you arrive with the picture shown on the right. Now you wonder: how many different works of art can you produce?

Input

The input contains several testcases. Each is specified by two unsigned 32-bit integers n and m, denoting the size of the rectangle. As you can observe, the number of lines of the corresponding grid is one more in each dimension. Input is terminated by n=m=0.

Output

For each test case output on a line the number of different art works that can be generated using the procedure described above. That is, how many paths are there on a grid where each step of the path consists of moving one unit to the right or one unit up? You may safely assume that this number fits into a 32-bit unsigned integer.

Sample Input

5 4
1 1
0 0

Sample Output

126
2
题解:找规律,总共走了m+n步,从这m+n步中选m步向右,规律很容易找出来,但是却是无符号的32位;
代码:
 #include<stdio.h>
#include<math.h>
const int MAXN=;
int main(){
__int64 N,ans;
int T;
scanf("%d",&T);
while(T--){
ans=;
scanf("%I64d",&N);
N++;
int flot=;
for(int i=;i<=sqrt(N);i++)if(N%i==)ans++;
printf("%I64d\n",ans);
}
return ;
}

Paths on a Grid(规律)的更多相关文章

  1. Paths on a Grid(简单组合数学)

    Paths on a Grid Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 23008 Accepted: 5683 Desc ...

  2. POJ1942——Paths on a Grid(组合数学)

    Paths on a Grid DescriptionImagine you are attending your math lesson at school. Once again, you are ...

  3. poj1942 Paths on a Grid(无mod大组合数)

    poj1942 Paths on a Grid 题意:给定一个长m高n$(n,m \in unsigned 32-bit)$的矩形,问有几种走法.$n=m=0$时终止. 显然的$C(m+n,n)$ 但 ...

  4. [ACM] POJ 1942 Paths on a Grid (组合)

    Paths on a Grid Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 21297   Accepted: 5212 ...

  5. POJ 1942:Paths on a Grid

    Paths on a Grid Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 22918   Accepted: 5651 ...

  6. POJ - 1942 D - Paths on a Grid

    Imagine you are attending your math lesson at school. Once again, you are bored because your teacher ...

  7. Paths on a Grid(poj 1942)

    给定一个矩形网格的长m和高n,其中m和n都是unsigned int32类型,一格代表一个单位,就是一步,求从左下角到右上角有多少种走法,每步只能向上或者向右走. //注意循环的时候,要循环小的数,否 ...

  8. poj1942 Paths on a Grid

    处理阶乘有三种办法:(1)传统意义上的直接递归,n的规模最多到20+,太小了,在本题不适用,而且非常慢(2)稍快一点的算法,就是利用log()化乘为加,n的规模虽然扩展到1000+,但是由于要用三重循 ...

  9. POJ 1942 Paths on a Grid

    // n*m 的格子 从左下角走到右上角的种数// 相当于从 n+m 的步数中选 m 步往上走// C(n+m,m) #include <iostream> #include <st ...

随机推荐

  1. header.htm

    <!--{ad/subnavbanner/a_mu}--> 的意思是   全局 页头二级导航栏广告 位 <!--{subtemplate common/pubsearchform}- ...

  2. 提示text还能输入多少字节

    1.添加jQuery自定义扩展 $(function($){ // tipWrap: 提示消息的容器 // maxNumber: 最大输入字符 $.fn.artTxtCount = function( ...

  3. 2016 Multi-University Training Contest 5&6 总结

    第五场和第六场多校都打得很糟糕. 能做到不以物喜不以己悲是假的,这对队伍的情绪也可以算上是比较大的打击. 很多时候我们发现了问题,但是依旧没有采取有效的方法去解决它,甚至也没有尝试去改变.这是一件相当 ...

  4. [LeetCode][Python]14: Longest Common Prefix

    # -*- coding: utf8 -*-'''__author__ = 'dabay.wang@gmail.com'https://oj.leetcode.com/problems/longest ...

  5. Hibernate 数据的批量插入、更新和删除

    4.2  Hibernate的批量处理 Hibernate完全以面向对象的方式来操作数据库,当程序里以面向对象的方式操作持久化对象时,将被自动转换为对数据库的操作.例如调用Session的delete ...

  6. Dot模板的使用小结2

    <!doctype html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

  7. 使用MD5完成自定义Person对象的加密过程

    ---恢复内容开始--- 首先:我们对自定义Person对象的加密过程所用的方法是归档写入文件的方法. 第一步:创建Person,继承于NSObject,然后在Person.h文件遵守NSCoding ...

  8. 小Y的难题

    Font Size:Aa Aa Aa Description 近期小Y迷上了数学,总是在思考各种数学问题.有一天,他不小心把墨水洒在草稿纸上.他如今能看到的是"2?3?1?4"(? ...

  9. C#高级编程三十天----泛型结构,泛型方法,泛型托付

    泛型结构 泛型结构和泛型类差点儿是一直的,仅仅是泛型结构没有继承的特性..NET平台提供的一个泛型结构是(可空类型)Nullablle<T>.可空类型的引入,主要是为了解决数据库语言中的数 ...

  10. MFC数据类型(data types)

    为便于理解MFC库函数中的各种形参,现将MFC中常见的参数类型总结如下: 下面这些是和Win32程序(SDK程序)共同使用的数据类型: 数据类型 意义 BOOL Boolean值(布尔值,不是TRUE ...