Minimum Inversion Number

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 14952    Accepted Submission(s): 9140

Problem Description
The inversion number of a given number sequence a1, a2, ..., an is the number of pairs (ai, aj) that satisfy i < j and ai > aj.

For a given sequence of numbers a1, a2, ..., an, if we move the first m >= 0 numbers to the end of the seqence, we will obtain another sequence. There are totally n such sequences as the following:

a1, a2, ..., an-1, an (where m = 0 - the initial seqence)
a2, a3, ..., an, a1 (where m = 1)
a3, a4, ..., an, a1, a2 (where m = 2)
...
an, a1, a2, ..., an-1 (where m = n-1)

You are asked to write a program to find the minimum inversion number out of the above sequences.

 
Input
The input consists of a number of test cases. Each case consists of two lines: the first line contains a positive integer n (n <= 5000); the next line contains a permutation of the n integers from 0 to n-1.
 
Output
For each case, output the minimum inversion number on a single line.
 
Sample Input
10 1 3 6 9 0 8 5 7 4 2
 
Sample Output
16
 题解;题意就是每次把序列的第一个元素放到最后,求最小逆序数;建设当前值为x则,每次逆序数减小x,增加N-1-x;因为x比x个数大,比N-1-X个数小;
代码:
 #include<stdio.h>
#include<string.h>
#define MIN(x,y)(x<y?x:y)
const int MAXN=;
int a[MAXN],b[MAXN],anser,c[MAXN];
void mergesort(int l,int r,int mid){
int i=l,j=mid+,k=l;
while(i<=mid&&j<=r){
if(a[i]<=a[j])b[k++]=a[i++];
else{
anser+=j-k;
b[k++]=a[j++];
}
}
while(i<=mid)b[k++]=a[i++];
while(j<=r)b[k++]=a[j++];
for(i=l;i<=r;i++)a[i]=b[i];
}
void merge(int l,int r){
if(l<r){
int mid=(l+r)>>;
merge(l,mid);
merge(mid+,r);
mergesort(l,r,mid);
}
}
int main(){
int N;
while(~scanf("%d",&N)){
for(int i=;i<N;i++)scanf("%d",a+i),c[i]=a[i];
anser=;
merge(,N-);
int temp=anser;
//printf("%d\n",anser);
for(int i=;i<N;i++){
temp=temp+(N--*c[i]);
//printf("%d %d\n",c[i],temp);
anser=MIN(anser,temp);
}
printf("%d\n",anser);
}
return ;
}
//n-a-1-(a) N-2*a+1;

Minimum Inversion Number(归并排序)的更多相关文章

  1. HDU 1394 Minimum Inversion Number(最小逆序数/暴力 线段树 树状数组 归并排序)

    题目链接: 传送门 Minimum Inversion Number Time Limit: 1000MS     Memory Limit: 32768 K Description The inve ...

  2. HDU1394 Minimum Inversion Number(线段树OR归并排序)

    Minimum Inversion Number Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java ...

  3. HDU 1394 Minimum Inversion Number(树状数组/归并排序实现

    Minimum Inversion Number Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java ...

  4. 逆序数2 HDOJ 1394 Minimum Inversion Number

    题目传送门 /* 求逆序数的四种方法 */ /* 1. O(n^2) 暴力+递推 法:如果求出第一种情况的逆序列,其他的可以通过递推来搞出来,一开始是t[1],t[2],t[3]....t[N] 它的 ...

  5. Minimum Inversion Number(线段树求逆序数)

    Minimum Inversion Number Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java ...

  6. HDU 1394 Minimum Inversion Number(线段树求最小逆序数对)

    HDU 1394 Minimum Inversion Number(线段树求最小逆序数对) ACM 题目地址:HDU 1394 Minimum Inversion Number 题意:  给一个序列由 ...

  7. HDU 1394 Minimum Inversion Number ( 树状数组求逆序数 )

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1394 Minimum Inversion Number                         ...

  8. HDU 1394 Minimum Inversion Number(最小逆序数 线段树)

    Minimum Inversion Number [题目链接]Minimum Inversion Number [题目类型]最小逆序数 线段树 &题意: 求一个数列经过n次变换得到的数列其中的 ...

  9. ACM Minimum Inversion Number 解题报告 -线段树

    C - Minimum Inversion Number Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d &a ...

随机推荐

  1. 正则语言(转的 大额_skylar )

    备注:正则表达式真的很头疼,收集起来,用起来很方便的. 常用的元字符 . 匹配除换行符以外的任意字符 \w 匹配字母或数字或下划线或汉字 \s 匹配任意的空白符 \d 匹配数字 \b 匹配单词的开始或 ...

  2. Oracle EBS-SQL (PO-5):采购订单控制信息查询.sql

    select distinct pla.po_header_id, --pha.type_lookup_code, pha.segment1       采购订单号, appf.full_name   ...

  3. c# xml操作类

    using System; using System.Collections.Generic; using System.Linq; using System.Web; using System.Xm ...

  4. 实用chrome插件

    2015年最实用的9款chrome插件 随着14年chrome浏览器的市场超过IE浏览器,chrome凭借它强劲性能和出色的使用体验真正的登上了平民级的殿堂.今天小编就为大家推荐9款自己常用的chro ...

  5. Cow Sorting(置换群)

    Cow Sorting Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 6664   Accepted: 2602 Descr ...

  6. The Unique MST (判断是否存在多个最小生成树)

    The Unique MST                                                                        Time Limit: 10 ...

  7. 利用协议代理实现导航控制器UINavigationController视图之间的正向传值和反向传值

    实验说明 (1)正向传值:比如A类里地值要传给B类用,就是我们先在A类中声明一个B类对象(当然B类头文件要import过来),然后把A类中得某个 值传递给B类中得某个值(所以需要在B类中先准备一个变量 ...

  8. Microsoft.Jet.OLEDB.4.0和Microsoft.ACE.OLEDB.12.0的适用版本

    Jet   可以访问 Office 97-2003,但不能访问 Office 2007. ACE 既可以访问 Office 2007,也可以访问 Office 97-2003. 另外:Microsof ...

  9. Android快速开发不可或缺的11个工具类

     Android快速开发不可或缺的11个工具类  :http://www.devst ore.cn/code/info/363.html

  10. Cannot create JDBC driver of class '' for connect URL 'jdbc:mysql://127.0.0.1:3306/test'

    原来的配置如下: <?xml version="1.0" encoding="UTF-8"?> <beans xmlns="http ...