D - Discovering Gold

Crawling in process... Crawling failed Time Limit:2000MS     Memory Limit:32768KB     64bit IO Format:%lld & %llu

Description

You are in a cave, a long cave! The cave can be represented by a 1 x N grid. Each cell of the cave can contain any amount of gold.

Initially you are in position 1. Now each turn you throw a perfect 6 sided dice. If you get X in the dice after throwing, you add X to your position and collect all the gold from the new position. If your new position is outside the cave, then you keep throwing again until you get a suitable result. When you reach the Nth position you stop your journey. Now you are given the information about the cave, you have to find out the expected number of gold you can collect using the given procedure.

Input

Input starts with an integer T (≤ 100), denoting the number of test cases.

Each case contains a blank line and an integer N (1 ≤ N ≤ 100) denoting the dimension of the cave. The next line contains N space separated integers. The ith integer of this line denotes the amount of gold you will get if you come to the ith cell. You may safely assume that all the given integers will be non-negative and no integer will be greater than 1000.

Output

For each case, print the case number and the expected number of gold you will collect. Errors less than 10-6 will be ignored.

Sample Input

3

1

101

2

10 3

3

3 6 9

Sample Output

Case 1: 101.0000000000

Case 2: 13.000

Case 3: 15

题目大意:抛色子移动,每个地点都有一些金子,问你到到达终点的时候拿到的金子数量的数学期望。

思路分析:刚开始始终都不懂题意,后来百度了一下才知道是让去求期望,但是依然没有什么好的思路,

后来认真的去复习了一些有关数学期望的姿势,知道读到这一句,解决这类问题,对随机变量A、B,有

数学期望E(aA+bB)=aE(A)+bE(b);根据这个不正可以构建状态转移方程用DP做么,每一点的期望可以

由它之前的位置的点的期望求出,DP[i]=a[i]+1/step*dp[i-(1...step)]

但是我现在不太理解的是为什么一定要逆推而不能正推orz,求指教,想明白了以后我也会回来补上。

代码:

#include <iostream>
#include <algorithm>
#include <stack>
#include <queue>
#include <cstdio>
#include <cstring>
using namespace std;
const int maxn=110;
double dp[maxn],a[maxn];
int kase=0;
int main()
{
    int T;
    scanf("%d",&T);
    while(T--)
    {
        int n;
        scanf("%d",&n);
        for(int i=1;i<=n;i++)
            scanf("%lf",&a[i]);
        memset(dp,0,sizeof(dp));
        dp[n]=a[n];
        for(int i=n-1;i>=1;i--)
        {
            dp[i]=a[i];
            //cout<<dp[i]<<endl;
            int step=min(6,n-i);
            for(int j=1;j<=step;j++)
            {
                dp[i]+=1.0/(step*1.0)*dp[i+j];
            }
        }
        printf("Case %d: %.6lf\n",++kase,dp[1]);
    }
    return 0;
}

Light oj 1030 概率DP的更多相关文章

  1. 概率DP light oj 1030

    t组数据 n块黄金 到这里就捡起来 出发点1 到n结束  点+位置>n 重掷一次 dp[i] 代表到这里的概率 dp[i]=(dp[i-1]+dp[i-2]... )/6  如果满6个的话 否则 ...

  2. Light OJ 1030 - Discovering Gold

    题目大意: 给你一个1*N的方格,你初始位置是在1,给你一个骰子,假设你现在的位置是X,你投掷一个骰子掷的点数是y, 那么你的新位置就是 X+y, 并且你可以得到新位置的宝藏.假如X+y > N ...

  3. Light OJ 1030 - Discovering Gold(概率dp)

    题目链接:http://www.lightoj.com/volume_showproblem.php?problem=1030 题目大意:有一个很长的洞穴, 可以看做是1-n的格子.你的起始位置在1的 ...

  4. loj 1030概率dp

    题目链接:http://lightoj.com/volume_showproblem.php?problem=1030 思路:一直以来对这种概率题都挺感冒的=.=......还是说一下思路吧,dp[i ...

  5. lightoj 1030 概率dp

    题目链接:http://lightoj.com/volume_showproblem.php?problem=1030 #include<cstdio> #include<cstri ...

  6. 玲珑学院oj 1152 概率dp

    1152 - Expected value of the expression Time Limit:2s Memory Limit:128MByte Submissions:128Solved:63 ...

  7. light oj 1205(数位DP)

    题目描述: 求给定区间中的回文数有多少个? 首先明确一点,如果一个数是回文数,那么给这个数两边加上相同的数,那么这个数还是回文数. 根据这点就可以进行递推了,p[start][end]=9*p[sta ...

  8. light oj 1032(数位DP)

    求一段区间中,每个十进制数所对应的二进制数中连续的1的个数之和. 设dp[i][0]代表长度为i的二进制数,首位为0,所含有的连续的1的个数之和. dp[i][1]代表长度为i的二进制数,首位为1,所 ...

  9. light oj 1422 区间dp

    #include <stdio.h> #include <string.h> #include <stdlib.h> #include <math.h> ...

随机推荐

  1. 如何使用sql语句使你的数据库减肥,下面以网狐6603数据库减肥脚本举例!

    原文转自:http://www.zccode.com/forum.php?mod=viewthread&tid=637&extra=page%3D1 网狐6603 专用数据库减肥特效脚 ...

  2. C++ 的多重继承

    不能够从对象访问基类的公开方法,真悲剧!只能在类里面提供公共函数! void Mentor::GetInfo(){ cout<<endl<<name<<endl&l ...

  3. c#进程间通信(Inter-Process Communication)

    原文:c#进程间通信(Inter-Process Communication) c#进程间通信(IPC, Inter-Process Communication) 接收端: using System; ...

  4. 一些pyhon的学习资料

    一直没有时间学习python,都说python语法简洁优美.但是我看它的语法还是不爽啊,没C/C++好阅读.但是C/C++又必须了解底层的计算机模型.着实会门槛高一些.特别是C++,对于我来说简直就是 ...

  5. sql中update,alter,modify,delete,drop的区别和使用(整理)(转)

    关于update和alter: 百度知道上关于update和alter有一个很形象的总结: 一个表有很多字段,一个字段里有很多数据. 一个家有很多房间,一个房间里有很多家具. update是用来将衣柜 ...

  6. QT类的继承结构

    QT类的继承结构 QT的类 core 数据集合 QString 几何类 QPoint QSize QRectangle 系统类 QColor QFont QImage QIcon QCursor QB ...

  7. hdu2460-Network:边的双连通分量

    题目大意:给出一个无向图以及Q次询问,每次询问增加一条无向边,要求输出增加这条边后剩余的桥的数目. 算法:类似于求割点的方法,先做一次dfs求出所有的桥,并且维护这棵dfs树,当一次询问加入一条边(a ...

  8. Java使用线程池递归压缩文件夹下面的所有子文件

    本文将介绍Java中利用线程池递归的方式压缩文件夹下面的所有子文件,具体方法如下: Gzip单个文件压缩 对于单个文件使用GZip压缩. package date0805.demo1; import ...

  9. 马士兵 Servlet_JSP(2) JSP源代码)

    1.最简单的JSP HelloWorld.jsp <html>     <head>         <title>Hello</title>     ...

  10. swift 随机数

    1.一行代码生成随机数  arc4random() 如果要生成一个生成在一定范围内的随机整数: func randomIn(#min: Int, max: Int) -> Int { retur ...