BZOJ 1652: [Usaco2006 Feb]Treats for the Cows
题目
1652: [Usaco2006 Feb]Treats for the Cows
Time Limit: 5 Sec Memory Limit: 64 MB
Submit: 234 Solved: 185
[Submit][Status]
Description
FJ has purchased N (1 <= N <= 2000) yummy treats for the cows who get money for giving vast amounts of milk. FJ sells one treat per day and wants to maximize the money he receives over a given period time. The treats are interesting for many reasons: * The treats are numbered 1..N and stored sequentially in single file in a long box that is open at both ends. On any day, FJ can retrieve one treat from either end of his stash of treats. * Like fine wines and delicious cheeses, the treats improve with age and command greater prices. * The treats are not uniform: some are better and have higher intrinsic value. Treat i has value v(i) (1 <= v(i) <= 1000). * Cows pay more for treats that have aged longer: a cow will pay v(i)*a for a treat of age a. Given the values v(i) of each of the treats lined up in order of the index i in their box, what is the greatest value FJ can receive for them if he orders their sale optimally? The first treat is sold on day 1 and has age a=1. Each subsequent day increases the age by 1.
约翰经常给产奶量高的奶牛发特殊津贴,于是很快奶牛们拥有了大笔不知该怎么花的钱.为此,约翰购置了N(1≤N≤2000)份美味的零食来卖给奶牛们.每天约翰售出一份零食.当然约翰希望这些零食全部售出后能得到最大的收益.这些零食有以下这些有趣的特性:
Input
* Line 1: A single integer,
N * Lines 2..N+1: Line i+1 contains the value of treat v(i)
Output
* Line 1: The maximum revenue FJ can achieve by selling the treats
Sample Input
1
3
1
5
2
Five treats. On the first day FJ can sell either treat #1 (value 1) or
treat #5 (value 2).
Sample Output
OUTPUT DETAILS:
FJ sells the treats (values 1, 3, 1, 5, 2) in the following order
of indices: 1, 5, 2, 3, 4, making 1x1 + 2x2 + 3x3 + 4x1 + 5x5 = 43.
题解
这道题用区间DP,f[i][j]表示最后i-j+1天卖i~j的商品的最大收益。转移见代码。
代码
/*Author:WNJXYK*/
#include<cstdio>
using namespace std; #define LL long long
#define Inf 2147483647
#define InfL 10000000000LL inline int abs(int x){if (x<) return -x;return x;}
inline int abs(LL x){if (x<) return -x;return x;}
inline void swap(int &x,int &y){int tmp=x;x=y;y=tmp;}
inline void swap(LL &x,LL &y){LL tmp=x;x=y;y=tmp;}
inline int remin(int a,int b){if (a<b) return a;return b;}
inline int remax(int a,int b){if (a>b) return a;return b;}
inline LL remin(LL a,LL b){if (a<b) return a;return b;}
inline LL remax(LL a,LL b){if (a>b) return a;return b;}
inline void read(int &x){x=;int f=;char ch=getchar();while(ch<''||ch>''){if(ch=='-')f=-;ch=getchar();}while(ch>=''&&ch<=''){x=x*+ch-'';ch=getchar();}x=x*f;}
inline void read(LL &x){x=;LL f=;char ch=getchar();while(ch<''||ch>''){if(ch=='-')f=-;ch=getchar();}while(ch>=''&&ch<=''){x=x*+ch-'';ch=getchar();}x=x*f;}
inline void read(int &x,int &y){read(x);read(y);}
inline void read(LL &x,LL &y){read(x);read(y);}
inline void read(int &x,int &y,int &z){read(x,y);read(z);}
inline void read(int &x,int &y,int &n,int &m){read(x,y);read(n,m);}
inline void read(LL &x,LL &y,LL &z){read(x,y);read(z);}
inline void read(LL &x,LL &y,LL &n,LL &m){read(x,y);read(n,m);} const int Maxn=;
int n,v[Maxn+];
int f[Maxn+][Maxn+];
int main(){
read(n);
for (int i=;i<=n;i++) read(v[i]);
for (int i=;i<=n;i++)
f[i][i]=v[i]*n;
for (int k=;k<n;k++){
for (int i=;i<=n-k;i++){
int j=i+k;
f[i][j]=remax(v[i]*(n-k)+f[i+][j],v[j]*(n-k)+f[i][j-]);
}
}
printf("%d\n",f[][n]);
return ;
}
BZOJ 1652: [Usaco2006 Feb]Treats for the Cows的更多相关文章
- BZOJ 1652: [Usaco2006 Feb]Treats for the Cows( dp )
dp( L , R ) = max( dp( L + 1 , R ) + V_L * ( n - R + L ) , dp( L , R - 1 ) + V_R * ( n - R + L ) ) 边 ...
- bzoj 1652: [Usaco2006 Feb]Treats for the Cows【区间dp】
裸的区间dp,设f[i][j]为区间(i,j)的答案,转移是f[i][j]=max(f[i+1][j]+a[i](n-j+i),f[i][j-1]+a[j]*(n-j+i)); #include< ...
- 【BZOJ】1652: [Usaco2006 Feb]Treats for the Cows(dp)
http://www.lydsy.com/JudgeOnline/problem.php?id=1652 dp.. 我们按间隔的时间分状态k,分别为1-n天 那么每对间隔为k的i和j.而我们假设i或者 ...
- [BZOJ 1652][USACO 06FEB]Treats for the Cows 题解(区间DP)
[BZOJ 1652][USACO 06FEB]Treats for the Cows Description FJ has purchased N (1 <= N <= 2000) yu ...
- 【记忆化搜索】bzoj1652 [Usaco2006 Feb]Treats for the Cows
跟某NOIP的<矩阵取数游戏>很像. f(i,j)表示从左边取i个,从右边取j个的答案. f[x][y]=max(dp(x-1,y)+a[x]*(x+y),dp(x,y-1)+a[n-y+ ...
- BZOJ1652 [Usaco2006 Feb]Treats for the Cows
蒟蒻许久没做题了,然后连动规方程都写不出了. 参照iwtwiioi大神,这样表示区间貌似更方便. 令f[i, j]表示i到j还没卖出去,则 f[i, j] = max(f[i + 1, j] + v[ ...
- BZOJ 1651: [Usaco2006 Feb]Stall Reservations 专用牛棚( 线段树 )
线段树.. -------------------------------------------------------------------------------------- #includ ...
- BZOJ 1651: [Usaco2006 Feb]Stall Reservations 专用牛棚
题目 1651: [Usaco2006 Feb]Stall Reservations 专用牛棚 Time Limit: 10 Sec Memory Limit: 64 MBSubmit: 553 ...
- BZOJ 1653 [Usaco2006 Feb]Backward Digit Sums ——搜索
[题目分析] 劳逸结合好了. 杨辉三角+暴搜. [代码] #include <cstdio> #include <cstring> #include <cmath> ...
随机推荐
- c 查找A字符串在B字符串中是否存在,计算出现的次数
主要是应用了头文件<string.h>中的strstr函数 char * strstr(const char *s1, const char *s2); 查找是否存在: #include& ...
- Velocity入门系列
Velocity介绍 Velocity是一个java模板引擎,通过简洁的语法可以返回动态内容给浏览器使用,本系类是基于velocity官方文档(就是照着翻译,同时对不清楚的地方进行详细讲解),其实技术 ...
- raphael入门到精通---入门篇之总览
什么是Raphael raphael.js是一小巧的javascript库,它可以在web上画矢量图简化你的工作,如果你想创建你指定的图表,图形区域或者可移动的组件,那么就使用raphael吧 话不多 ...
- POJ 1850 Code(找规律)
Code Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 7913 Accepted: 3709 Description ...
- 5.6.3.7 localeCompare() 方法
与操作字符串有关的最后一个方法是localeCompare(),这个方法比较两个字符串,并返回下列值中的一个: 如果字符串在字母表中应该排在字符串参数之前,则返回一个负数(大多数情况下是-1,具体的值 ...
- Zencart先生成订单后付款,类似淘宝后台修改订单价格
Zencart 使用 Paypal 付款,会出现漏单的情况,即 paypal 已经收到客户的付款,但是网站后台没有客户的订单.导致 paypal 漏单的原因大致会是当客户跳转到Paypal 网站付款完 ...
- Windows下安装Apache2.4+PHP5.4+Mysql5.7
注:文中所写的安装过程均在Win7 x86下通过测试,提供的百度云下载链接均为32位安装包,如需Apache和PHP的64位安装包请从官网下载! 一.安装Apache2.4.12 Apache官方下载 ...
- monkeyrunner学习--手机按键
按下HOME键 device.press('KEYCODE_HOME','DOWN_AND_UP') 按下BACK键 device.press('KEYCODE_BACK','DOWN_AND_UP' ...
- IC卡,ID卡,M1卡,射频卡
一般把可读可写,频率是13.56MHz的射频卡称为IC卡,IC卡可以写入数据, 只能读,频率是125KHz的射频卡称为ID卡, M1卡是NXP公司的S50卡的一种叫法,国内的复旦F08,达华的TKS5 ...
- [置顶] MongoDB 分布式操作——分片操作
MongoDB 分布式操作——分片操作 描述: 像其它分布式数据库一样,MongoDB同样支持分布式操作,且MongoDB将分布式已经集成到数据库中,其分布式体系如下图所示: 所谓的片,其实就是一个单 ...