题目链接:fzu 1911 Construct a Matrix

题目大意:给出n和m,f[i]为斐波那契数列,s[i]为斐波那契数列前i项的和。r = s[n] % m。构造一个r * r的矩阵,只能使用-1、0、1。使得矩阵的每行每列的和都不相同,输出方案,不行的话输出No。

解题思路:求r的话用矩阵快速幂求,每次模掉m,

{ {1, 1, 0}, {1, 0, 0}, {1, 1, 1} } * { f[i], f[i -1], s[i] } = { f[i + 1], f[i], s[i + 1] }.

然后求出r后,若r是奇数或0,则矩阵不存在;r为偶数时,只要按照规律建立矩阵就可以了。

#include <stdio.h>
#include <string.h> const int M = 10;
const int N = 205; int n, m, r; struct Mul {
int s[M][M];
Mul() { memset(s, 0, sizeof(s)); }
Mul operator * (const Mul& c) {
Mul ans; for (int i = 0; i < 3; i++) {
for (int j = 0; j < 3; j++) {
ans.s[i][j] = 0;
for (int k = 0; k < 3; k++)
ans.s[i][j] = (ans.s[i][j] + s[i][k] * c.s[k][j] ) % m;
}
}
return ans;
} void put() {
for (int i = 0; i < 3; i++) {
for (int j = 0; j < 3; j++)
printf("%d ", s[i][j]);
printf("\n");
}
}
}; Mul MulPow(Mul a, int t) {
if (t == 1) return a; Mul x = MulPow(a, t / 2); x = x * x; if (t % 2) x = x * a; return x;
} void init() {
if (n > 2) {
Mul a;
a.s[0][0] = a.s[0][1] = a.s[1][0] = a.s[2][0] = a.s[2][1] = a.s[2][2] = 1; Mul ans = MulPow(a, n - 2); r = (ans.s[2][0] + ans.s[2][1] + ans.s[2][2] * 2) % m;
} else if (n == 2) {
r = 2 % m;
} else if (n == 1) {
r = 1;
}
} void solve() {
if (r == 0 || r % 2)
printf("No\n");
else {
int v[N][N];
memset(v, -1, sizeof(v));
printf("Yes\n"); for (int i = 1; i <= r; i++) {
int tmp;
if (i % 2) {
tmp = (r + i + 1) / 2;
v[tmp][i] = 0;
} else
tmp = (r - i) / 2;
for (int j = tmp + 1; j <= r; j++)
v[j][i] = 1;
} for (int i = 1; i <= r; i++) {
for (int j = 1; j < r; j++)
printf("%d ", v[i][j]);
printf("%d\n", v[i][r]);
}
}
} int main () {
int cas;
scanf("%d", &cas);
for (int i = 1; i <= cas; i++) {
scanf("%d%d", &n, &m);
printf("Case %d: ", i); init(); solve();
}
return 0;
}

fzu 1911 Construct a Matrix(矩阵快速幂+规律)的更多相关文章

  1. Construct a Matrix (矩阵快速幂+构造)

    There is a set of matrixes that are constructed subject to the following constraints: 1. The matrix ...

  2. FZU 1911 Construct a Matrix

    题目链接:Construct a Matrix 题意:构造一个矩阵,要求矩阵的每行每列的和都不相同.矩阵的边长是前n项斐波那契的和. 思路:由sn = 2*(fn-1)+(fn-2)-1,只要知道第n ...

  3. 233 Matrix 矩阵快速幂

    In our daily life we often use 233 to express our feelings. Actually, we may say 2333, 23333, or 233 ...

  4. HDU - 5015 233 Matrix (矩阵快速幂)

    In our daily life we often use 233 to express our feelings. Actually, we may say 2333, 23333, or 233 ...

  5. UVa 11149 Power of Matrix (矩阵快速幂,倍增法或构造矩阵)

    题意:求A + A^2 + A^3 + ... + A^m. 析:主要是两种方式,第一种是倍增法,把A + A^2 + A^3 + ... + A^m,拆成两部分,一部分是(E + A^(m/2))( ...

  6. HDU 5015 233 Matrix --矩阵快速幂

    题意:给出矩阵的第0行(233,2333,23333,...)和第0列a1,a2,...an(n<=10,m<=10^9),给出式子: A[i][j] = A[i-1][j] + A[i] ...

  7. 233 Matrix(矩阵快速幂+思维)

    In our daily life we often use 233 to express our feelings. Actually, we may say 2333, 23333, or 233 ...

  8. UVa 11149 Power of Matrix 矩阵快速幂

    题意: 给出一个\(n \times n\)的矩阵\(A\),求\(A+A^2+A^3+ \cdots + A^k\). 分析: 这题是有\(k=0\)的情况,我们一开始先特判一下,直接输出单位矩阵\ ...

  9. HDU5015 233 Matrix —— 矩阵快速幂

    题目链接:https://vjudge.net/problem/HDU-5015 233 Matrix Time Limit: 10000/5000 MS (Java/Others)    Memor ...

随机推荐

  1. poj 3295 Tautology(栈)

    题目链接:http://poj.org/problem?id=3295 思路分析:判断逻辑表达式是否为永真式问题.根据该表达式的特点,逻辑词在逻辑变量前,类似于后缀表达式求值问题. 算法中使用两个栈, ...

  2. 一个例子:HelloWorld

    作为C语言来说,我是用的是QT Creator作为开发工具. 事实上使用什么工具无所谓.重要的是学到实用的知识. 第一个实例程序就是HelloWorld程序.上代码: 版权声明:您好,转载请离开我的博 ...

  3. centos6.5 mysql安装+远程访问+备份恢复+基本操作+卸载

    参考博文: Linux学习之CentOS(十三)--CentOS6.4下Mysql数据库的安装与配置 MySQL修改root密码的多种方法 MySQL的备份与还原 解决mysql导入还原时乱码的问题 ...

  4. vhost文件设置

    #例子<VirtualHost *.82> #设置端口号为82 ServerName localhost #服务器名称 DocumentRoot "d:/Web" #文 ...

  5. 今天才知道mysql

    insert MySQL中的INSERT语句和标准的INSERT不太一样,在标准的SQL语句中,一次插入一条记录的INSERT语句只有一种形式.INSERT INTO tablename(列名…) V ...

  6. Week6(10月17日):周末别忘记运动

    Part I:提问  =========================== 1.多对多.一对多关系的数据实体模型,如何创建? 已知汽车4S店需开发一个客户关系管理系统(CRM),请为其中的客户和汽车 ...

  7. hadoop安全模式

      hadoop安全模式在分布式文件系统启动的时候,开始的时候会有安全模式,当分布式文件系统处于安全模式的情况下,文件系统中的内容不允许修改也不允许删除,直到安全模式结束.安全模式主要是为了系统启动的 ...

  8. POJ 2528 QAQ段树+分离

    Time Limit:1000MS    Memory Limit:65536KB    64bit IO Format:%I64d & %I64u Submitcid=58236#statu ...

  9. android蓝牙的调试(博通蓝牙工作 and 低功耗模式)

    首先结合项目从整体上去把握这部分: 蓝牙模块中一个比较核心的文件是bluetooth.c, 在我们上电的时候, 会调用这个文件中bt_enable()这个函数, 在这个函数里面先调用set_bluet ...

  10. awk 工具简介NF-NR

    相较于 sed 常常作用于一整个行的处理, awk 则比较倾向于一行当中分成数个『字段』来处理. 因此,awk 相当的适合处理小型的数据数据处理呢!awk 通常运作的模式是这样的:[root@linu ...