题目链接:fzu 1911 Construct a Matrix

题目大意:给出n和m,f[i]为斐波那契数列,s[i]为斐波那契数列前i项的和。r = s[n] % m。构造一个r * r的矩阵,只能使用-1、0、1。使得矩阵的每行每列的和都不相同,输出方案,不行的话输出No。

解题思路:求r的话用矩阵快速幂求,每次模掉m,

{ {1, 1, 0}, {1, 0, 0}, {1, 1, 1} } * { f[i], f[i -1], s[i] } = { f[i + 1], f[i], s[i + 1] }.

然后求出r后,若r是奇数或0,则矩阵不存在;r为偶数时,只要按照规律建立矩阵就可以了。

#include <stdio.h>
#include <string.h> const int M = 10;
const int N = 205; int n, m, r; struct Mul {
int s[M][M];
Mul() { memset(s, 0, sizeof(s)); }
Mul operator * (const Mul& c) {
Mul ans; for (int i = 0; i < 3; i++) {
for (int j = 0; j < 3; j++) {
ans.s[i][j] = 0;
for (int k = 0; k < 3; k++)
ans.s[i][j] = (ans.s[i][j] + s[i][k] * c.s[k][j] ) % m;
}
}
return ans;
} void put() {
for (int i = 0; i < 3; i++) {
for (int j = 0; j < 3; j++)
printf("%d ", s[i][j]);
printf("\n");
}
}
}; Mul MulPow(Mul a, int t) {
if (t == 1) return a; Mul x = MulPow(a, t / 2); x = x * x; if (t % 2) x = x * a; return x;
} void init() {
if (n > 2) {
Mul a;
a.s[0][0] = a.s[0][1] = a.s[1][0] = a.s[2][0] = a.s[2][1] = a.s[2][2] = 1; Mul ans = MulPow(a, n - 2); r = (ans.s[2][0] + ans.s[2][1] + ans.s[2][2] * 2) % m;
} else if (n == 2) {
r = 2 % m;
} else if (n == 1) {
r = 1;
}
} void solve() {
if (r == 0 || r % 2)
printf("No\n");
else {
int v[N][N];
memset(v, -1, sizeof(v));
printf("Yes\n"); for (int i = 1; i <= r; i++) {
int tmp;
if (i % 2) {
tmp = (r + i + 1) / 2;
v[tmp][i] = 0;
} else
tmp = (r - i) / 2;
for (int j = tmp + 1; j <= r; j++)
v[j][i] = 1;
} for (int i = 1; i <= r; i++) {
for (int j = 1; j < r; j++)
printf("%d ", v[i][j]);
printf("%d\n", v[i][r]);
}
}
} int main () {
int cas;
scanf("%d", &cas);
for (int i = 1; i <= cas; i++) {
scanf("%d%d", &n, &m);
printf("Case %d: ", i); init(); solve();
}
return 0;
}

fzu 1911 Construct a Matrix(矩阵快速幂+规律)的更多相关文章

  1. Construct a Matrix (矩阵快速幂+构造)

    There is a set of matrixes that are constructed subject to the following constraints: 1. The matrix ...

  2. FZU 1911 Construct a Matrix

    题目链接:Construct a Matrix 题意:构造一个矩阵,要求矩阵的每行每列的和都不相同.矩阵的边长是前n项斐波那契的和. 思路:由sn = 2*(fn-1)+(fn-2)-1,只要知道第n ...

  3. 233 Matrix 矩阵快速幂

    In our daily life we often use 233 to express our feelings. Actually, we may say 2333, 23333, or 233 ...

  4. HDU - 5015 233 Matrix (矩阵快速幂)

    In our daily life we often use 233 to express our feelings. Actually, we may say 2333, 23333, or 233 ...

  5. UVa 11149 Power of Matrix (矩阵快速幂,倍增法或构造矩阵)

    题意:求A + A^2 + A^3 + ... + A^m. 析:主要是两种方式,第一种是倍增法,把A + A^2 + A^3 + ... + A^m,拆成两部分,一部分是(E + A^(m/2))( ...

  6. HDU 5015 233 Matrix --矩阵快速幂

    题意:给出矩阵的第0行(233,2333,23333,...)和第0列a1,a2,...an(n<=10,m<=10^9),给出式子: A[i][j] = A[i-1][j] + A[i] ...

  7. 233 Matrix(矩阵快速幂+思维)

    In our daily life we often use 233 to express our feelings. Actually, we may say 2333, 23333, or 233 ...

  8. UVa 11149 Power of Matrix 矩阵快速幂

    题意: 给出一个\(n \times n\)的矩阵\(A\),求\(A+A^2+A^3+ \cdots + A^k\). 分析: 这题是有\(k=0\)的情况,我们一开始先特判一下,直接输出单位矩阵\ ...

  9. HDU5015 233 Matrix —— 矩阵快速幂

    题目链接:https://vjudge.net/problem/HDU-5015 233 Matrix Time Limit: 10000/5000 MS (Java/Others)    Memor ...

随机推荐

  1. poj 1979 Red and Black(dfs)

    题目链接:http://poj.org/problem?id=1979 思路分析:使用DFS解决,与迷宫问题相似:迷宫由于搜索方向只往左或右一个方向,往上或下一个方向,不会出现重复搜索: 在该问题中往 ...

  2. 国际名品SYSTEM入驻北京金融街购物中心__购物败家_YOKA时尚网

    国际名品SYSTEM入驻北京金融街购物中心__购物败家_YOKA时尚网 国际名品SYSTEM入驻北京金融街购物中心

  3. 编程算法 - 最长公共子序列(LCS) 代码(C)

    最长公共子序列(LCS) 代码(C) 本文地址: http://blog.csdn.net/caroline_wendy 题目: 给定两个字符串s,t, 求出这两个字符串最长的公共子序列的长度. 字符 ...

  4. 用newLISP读取Hive的元数据

    思想是通过调用hive -e命令,然后解析返回的结果. 以下的hive.lsp文件是一个样例,提供了读取本地hive数据库名称.表名,表结构和依据hive表的创建语句生成相应的MySQL的创建语句. ...

  5. Android学习——百度地图开发定位与显示Demo

    百度地图给我们提供了很丰富的API供我们进行二次开发.百度地图的SDK与定位SDK在今年6月份进行了更新. 地图更新为3.0,定位更新为4.2.百度说:这次更新对接口有了较大部分的调整,与之前版本号不 ...

  6. Android 5.0五大安全特性

    全盘加密(Full Disk Encryption, FDE) 对所有闪存数据加密.性能下降较大 Nexus 6,Nexus 9无法关闭FDE 对于其它设备.Google推荐开启 多用户支持 4.2中 ...

  7. 17.1.1.7 Setting Up Replication with New Master and Slaves 设置复制对于新的Master和Slaves:

    17.1.1.7 Setting Up Replication with New Master and Slaves 设置复制对于新的Master和Slaves: 最简单和最直接的方法是设置复制用于使 ...

  8. Net::OpenSSH 使用例子

    [root@dr-mysql01 mojo]# cat a1.pl use Net::OpenSSH; my $host = '121.4xx.xx1.41'; my $user = 'root'; ...

  9. arm:启动代码判断是从nand启动还是从norflash启动,拷贝程序到内存的过程

    一.nand启动和nor启动:[1] CPU从0x00000000位置开始运行程序. 1.nand启动: 如果将S3C2440配置成从NANDFLASH启动(将开发板的启动开关拔到nand端,此时OM ...

  10. 字符串处理-AC自动机

    估计在OJ上刷过题的都会对AC自动机这个名词很感兴趣,同样,记得去年ACM暑期集训的时候,在最后讲到字符串部分,听说了这个算法的名字之后就对于它心向往之,AC正好是Accept的简称,字面意义上的理解 ...