poj 1986 Distance Queries(LCA)
Description
Farmer John's cows refused to run in his marathon since he chose a path much too long for their leisurely lifestyle. He therefore wants to find a path of a more reasonable length. The input to this problem consists of the same input as in "Navigation Nightmare",followed by a line containing a single integer K, followed by K "distance queries". Each distance query is a line of input containing two integers, giving the numbers of two farms between which FJ is interested in computing distance (measured in the length of the roads along the path between the two farms). Please answer FJ's distance queries as quickly as possible!
Input
* Lines ..+M: Same format as "Navigation Nightmare" * Line +M: A single integer, K. <= K <= , * Lines +M..+M+K: Each line corresponds to a distance query and contains the indices of two farms.
Output
* Lines ..K: For each distance query, output on a single line an integer giving the appropriate distance.
E
E
S
N
W
S
Sample Output
Hint
Farms and are ++= apart.
Source
题意:给一棵带权重的树,共有k个查询,每次查询树中2个结点的距离。结点数n最大为40000,k最大10000
分析:首先我们将无根树转为有根树,可以在O(n)时间内得到每个结点到根结点的距离。由于在树中从一个结点走到另一个结点的路径是唯一的,所以a到b的路径一定经过lca(a,b),设lca(a,b)=c。此时不难发现d(a,b)=d(a,root)+d(b,root)-2*d(c,root)。
这里用的是并查集的方法查找LCA,时间1000+ms,感觉有点慢
#pragma comment(linker, "/STACK:1024000000,1024000000")
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<math.h>
#include<algorithm>
#include<queue>
#include<set>
#include<bitset>
#include<map>
#include<vector>
#include<stdlib.h>
#include <stack>
using namespace std;
#define PI acos(-1.0)
#define max(a,b) (a) > (b) ? (a) : (b)
#define min(a,b) (a) < (b) ? (a) : (b)
#define ll long long
#define eps 1e-10
#define MOD 1000000007
#define N 100006
#define inf 1e12
int n,m; int tot,qsize;
int head[N],qhead[N];
int vis[N];//标记
int dis[N];//距离
int fa[N]; struct Node
{
int from;
int to;
int next;
int cost;
}edge[N<<],qe[N];
void init()
{
tot=; qsize=; memset(head,-,sizeof(head));
memset(qhead,-,sizeof(qhead));
memset(vis,,sizeof(vis));
memset(fa,,sizeof(fa));
memset(dis,,sizeof(dis));
memset(edge,,sizeof(edge));
memset(qe,,sizeof(qe));
}
void addEdge(int s,int u,int c)//邻接矩阵函数
{
edge[tot].from=s;
edge[tot].to=u;
edge[tot].cost=c;
edge[tot].next=head[s];
head[s]=tot++;
}
void addQedge(int s,int u){
qe[qsize].from=s;
qe[qsize].to=u;
qe[qsize].next=qhead[s];
qhead[s]=qsize++;
} /////////////////////////////////////////////////////////////
int find(int x){
return fa[x]==x?x:fa[x]=find(fa[x]);
}
/////////////////////////////////////////////////////////////
void tarjan(int u)//tarjan算法找出图中的所有强连通分支
{
fa[u]=u;
vis[u]=;
for(int i=head[u];i!=-;i=edge[i].next){
int v=edge[i].to;
if(!vis[v]){
dis[v]=dis[u]+edge[i].cost;
tarjan(v);
fa[v]=u;
}
}
for(int i=qhead[u];i!=-;i=qe[i].next){
int v=qe[i].to;
if(vis[v]){
qe[i].cost=dis[u]+dis[v]-*dis[find(v)];
qe[i^].cost=qe[i].cost;
}
}
}
int main()
{
while(scanf("%d%d",&n,&m)==){
init();
int a,b,c;
char s[];
for(int i=;i<m;i++){
scanf("%d%d%d%s",&a,&b,&c,s);
addEdge(a,b,c);
addEdge(b,a,c);
}
int q;
scanf("%d",&q);
while(q--){
scanf("%d%d",&a,&b);
addQedge(a,b);
addQedge(b,a);
}
tarjan();
for(int i=;i<qsize;i+=){
printf("%d\n",qe[i].cost);
}
}
return ;
}
#pragma comment(linker, "/STACK:1024000000,1024000000")
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<math.h>
#include<algorithm>
#include<queue>
#include<set>
#include<bitset>
#include<map>
#include<vector>
#include<stdlib.h>
#include <stack>
using namespace std;
#define PI acos(-1.0)
#define max(a,b) (a) > (b) ? (a) : (b)
#define min(a,b) (a) < (b) ? (a) : (b)
#define ll long long
#define eps 1e-10
#define MOD 1000000007
#define N 200000
#define inf 1e12
vector<pair<int,int> >edge[N];
vector<pair<int,int> >que[N];
int n,m,q;
int ans[N];
int dis[N];
int fa[N];
int vis[N];
int sum;
int find(int x){
return fa[x]==x?x:fa[x]=find(fa[x]);
}
void LCA(int u,int p){
fa[u]=u;
for(int i=;i<edge[u].size();i++){
int v=edge[u][i].first;
if(v==p) continue;
dis[v]=dis[u]+edge[u][i].second;
LCA(v,u);
fa[v]=u;
}
vis[u]=;
if(sum==q) return;
for(int i=;i<que[u].size();i++){
int v=que[u][i].first;
if(vis[v]){
ans[que[u][i].second]=dis[u]+dis[v]-*dis[find(v)];
}
}
}
int main()
{
while(scanf("%d%d",&n,&m)==){ for(int i=;i<N;i++){
edge[i].clear();
que[i].clear();
}
sum=;
memset(vis,,sizeof(vis)); char s[];
for(int i=;i<m;i++){
int a,b,c;
scanf("%d%d%d%s",&a,&b,&c,s);
edge[a].push_back(make_pair(b,c));
edge[b].push_back(make_pair(a,c));
} scanf("%d",&q);
for(int i=;i<q;i++){
int x,y;
scanf("%d%d",&x,&y);
que[x].push_back(make_pair(y,i));
que[y].push_back(make_pair(x,i));
ans[i]=;
}
dis[]=;
LCA(,); for(int i=;i<q;i++){
printf("%d\n",ans[i]);
}
}
return ;
}
poj 1986 Distance Queries(LCA)的更多相关文章
- poj 1986 Distance Queries(LCA:倍增/离线)
计算树上的路径长度.input要去查poj 1984. 任意建一棵树,利用树形结构,将问题转化为u,v,lca(u,v)三个点到根的距离.输出d[u]+d[v]-2*d[lca(u,v)]. 倍增求解 ...
- POJ 1986 Distance Queries(Tarjan离线法求LCA)
Distance Queries Time Limit: 2000MS Memory Limit: 30000K Total Submissions: 12846 Accepted: 4552 ...
- POJ 1986 Distance Queries (Tarjan算法求最近公共祖先)
题目链接 Description Farmer John's cows refused to run in his marathon since he chose a path much too lo ...
- POJ1986 Distance Queries (LCA)(倍增)
Distance Queries Time Limit: 2000MS Memory Limit: 30000K Total Submissions: 12950 Accepted: 4577 ...
- POJ - 1986 Distance Queries(离线Tarjan算法)
1.一颗树中,给出a,b,求最近的距离.(我没考虑不联通的情况,即不是一颗树的情况) 2.用最近公共祖先来求, 记下根结点到任意一点的距离dis[],这样ans = dis[u] + dis[v] - ...
- POJ 1986 Distance Queries / UESTC 256 Distance Queries / CJOJ 1129 【USACO】距离咨询(最近公共祖先)
POJ 1986 Distance Queries / UESTC 256 Distance Queries / CJOJ 1129 [USACO]距离咨询(最近公共祖先) Description F ...
- POJ.1986 Distance Queries ( LCA 倍增 )
POJ.1986 Distance Queries ( LCA 倍增 ) 题意分析 给出一个N个点,M条边的信息(u,v,w),表示树上u-v有一条边,边权为w,接下来有k个询问,每个询问为(a,b) ...
- POJ 1986 Distance Queries LCA两点距离树
标题来源:POJ 1986 Distance Queries 意甲冠军:给你一棵树 q第二次查询 每次你问两个点之间的距离 思路:对于2点 u v dis(u,v) = dis(root,u) + d ...
- POJ 1986 Distance Queries 【输入YY && LCA(Tarjan离线)】
任意门:http://poj.org/problem?id=1986 Distance Queries Time Limit: 2000MS Memory Limit: 30000K Total ...
随机推荐
- 【转】RTSP协议学习笔记
第一部分:RTSP协议 一. RTSP协议概述 RTSP(Real-Time Stream Protocol )是一种基于文本的应用层协议,在语法及一些消息参数等方面,RTSP协议与HTTP协议类似. ...
- hdu 3711 Binary Number(暴力 模拟)
Problem Description For non-negative integers x and y, f(x, y) , )=,f(, )=, f(, )=. Now given sets o ...
- pod setup 报CocoaPods was not able to update the `master` repo 错误解决办法
先删除全局的缓存: $ sudo rm -fr ~/Library/Caches/CocoaPods/ $ sudo rm -fr ~/.cocoapods/repos/master/ 还不行的话就把 ...
- ios想要取消执行延时调用的方法
想要取消执行延时调用的方法: [[self class] cancelPreviousPerformRequestsWithTarget:self selector:@selector(hideDia ...
- HDU 1813 Escape from Tetris (IDA*)
传送门:http://acm.hdu.edu.cn/showproblem.php?pid=1813 题意:给你一个n*n的迷宫,其中0代表有一个人在这个位置,1代表墙,现在要求一个路线,使所有的人通 ...
- debian安装mysql
http://thirteen-tw.blogspot.com/2008/09/debian-mysql-server.html 安裝MySQL-Server debian:~# apt-get in ...
- Qt之操作Excel
Visual Basic for Applications(VBA)是一种Visual Basic的一种宏语言,主要能用来扩展Windows的应用程式功能,特别是Microsoft Office软件. ...
- 微信小程序demo豆瓣图书
最近微信小程序被炒得很火热,本人也抱着试一试的态度下载了微信web开发者工具,开发工具比较简洁,功能相对比较少,个性化设置也没有.了解完开发工具之后,顺便看了一下小程序的官方开发文档,大概了解了小程序 ...
- kaggle之数字序列预测
数字序列预测 Github地址 Kaggle地址 # -*- coding: UTF-8 -*- %matplotlib inline import pandas as pd import strin ...
- MVC Razor 一些常用的方法
一.在ASP.NET MVC中,创建视图最典型的方式是调用一个action方法,它使用模型准备视图数据.action方法然后调用控制器的视图方法创建视图. 1 <% Html.RenderAct ...