Description

Farmer John's cows refused to run in his marathon since he chose a path much too long for their leisurely lifestyle. He therefore wants to find a path of a more reasonable length. The input to this problem consists of the same input as in "Navigation Nightmare",followed by a line containing a single integer K, followed by K "distance queries". Each distance query is a line of input containing two integers, giving the numbers of two farms between which FJ is interested in computing distance (measured in the length of the roads along the path between the two farms). Please answer FJ's distance queries as quickly as possible! 

Input

* Lines ..+M: Same format as "Navigation Nightmare" 

* Line +M: A single integer, K.  <= K <= , 

* Lines +M..+M+K: Each line corresponds to a distance query and contains the indices of two farms. 

Output

* Lines ..K: For each distance query, output on a single line an integer giving the appropriate distance. 
Sample Input
   E
E
S
N
W
S

Sample Output


Hint

Farms  and  are ++= apart. 

Source

 

题意:给一棵带权重的树,共有k个查询,每次查询树中2个结点的距离。结点数n最大为40000,k最大10000

分析:首先我们将无根树转为有根树,可以在O(n)时间内得到每个结点到根结点的距离。由于在树中从一个结点走到另一个结点的路径是唯一的,所以a到b的路径一定经过lca(a,b),设lca(a,b)=c。此时不难发现d(a,b)=d(a,root)+d(b,root)-2*d(c,root)。

这里用的是并查集的方法查找LCA,时间1000+ms,感觉有点慢

 #pragma comment(linker, "/STACK:1024000000,1024000000")
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<math.h>
#include<algorithm>
#include<queue>
#include<set>
#include<bitset>
#include<map>
#include<vector>
#include<stdlib.h>
#include <stack>
using namespace std;
#define PI acos(-1.0)
#define max(a,b) (a) > (b) ? (a) : (b)
#define min(a,b) (a) < (b) ? (a) : (b)
#define ll long long
#define eps 1e-10
#define MOD 1000000007
#define N 100006
#define inf 1e12
int n,m; int tot,qsize;
int head[N],qhead[N];
int vis[N];//标记
int dis[N];//距离
int fa[N]; struct Node
{
int from;
int to;
int next;
int cost;
}edge[N<<],qe[N];
void init()
{
tot=; qsize=; memset(head,-,sizeof(head));
memset(qhead,-,sizeof(qhead));
memset(vis,,sizeof(vis));
memset(fa,,sizeof(fa));
memset(dis,,sizeof(dis));
memset(edge,,sizeof(edge));
memset(qe,,sizeof(qe));
}
void addEdge(int s,int u,int c)//邻接矩阵函数
{
edge[tot].from=s;
edge[tot].to=u;
edge[tot].cost=c;
edge[tot].next=head[s];
head[s]=tot++;
}
void addQedge(int s,int u){
qe[qsize].from=s;
qe[qsize].to=u;
qe[qsize].next=qhead[s];
qhead[s]=qsize++;
} /////////////////////////////////////////////////////////////
int find(int x){
return fa[x]==x?x:fa[x]=find(fa[x]);
}
/////////////////////////////////////////////////////////////
void tarjan(int u)//tarjan算法找出图中的所有强连通分支
{
fa[u]=u;
vis[u]=;
for(int i=head[u];i!=-;i=edge[i].next){
int v=edge[i].to;
if(!vis[v]){
dis[v]=dis[u]+edge[i].cost;
tarjan(v);
fa[v]=u;
}
}
for(int i=qhead[u];i!=-;i=qe[i].next){
int v=qe[i].to;
if(vis[v]){
qe[i].cost=dis[u]+dis[v]-*dis[find(v)];
qe[i^].cost=qe[i].cost;
}
}
}
int main()
{
while(scanf("%d%d",&n,&m)==){
init();
int a,b,c;
char s[];
for(int i=;i<m;i++){
scanf("%d%d%d%s",&a,&b,&c,s);
addEdge(a,b,c);
addEdge(b,a,c);
}
int q;
scanf("%d",&q);
while(q--){
scanf("%d%d",&a,&b);
addQedge(a,b);
addQedge(b,a);
}
tarjan();
for(int i=;i<qsize;i+=){
printf("%d\n",qe[i].cost);
}
}
return ;
}
 #pragma comment(linker, "/STACK:1024000000,1024000000")
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<math.h>
#include<algorithm>
#include<queue>
#include<set>
#include<bitset>
#include<map>
#include<vector>
#include<stdlib.h>
#include <stack>
using namespace std;
#define PI acos(-1.0)
#define max(a,b) (a) > (b) ? (a) : (b)
#define min(a,b) (a) < (b) ? (a) : (b)
#define ll long long
#define eps 1e-10
#define MOD 1000000007
#define N 200000
#define inf 1e12
vector<pair<int,int> >edge[N];
vector<pair<int,int> >que[N];
int n,m,q;
int ans[N];
int dis[N];
int fa[N];
int vis[N];
int sum;
int find(int x){
return fa[x]==x?x:fa[x]=find(fa[x]);
}
void LCA(int u,int p){
fa[u]=u;
for(int i=;i<edge[u].size();i++){
int v=edge[u][i].first;
if(v==p) continue;
dis[v]=dis[u]+edge[u][i].second;
LCA(v,u);
fa[v]=u;
}
vis[u]=;
if(sum==q) return;
for(int i=;i<que[u].size();i++){
int v=que[u][i].first;
if(vis[v]){
ans[que[u][i].second]=dis[u]+dis[v]-*dis[find(v)];
}
}
}
int main()
{
while(scanf("%d%d",&n,&m)==){ for(int i=;i<N;i++){
edge[i].clear();
que[i].clear();
}
sum=;
memset(vis,,sizeof(vis)); char s[];
for(int i=;i<m;i++){
int a,b,c;
scanf("%d%d%d%s",&a,&b,&c,s);
edge[a].push_back(make_pair(b,c));
edge[b].push_back(make_pair(a,c));
} scanf("%d",&q);
for(int i=;i<q;i++){
int x,y;
scanf("%d%d",&x,&y);
que[x].push_back(make_pair(y,i));
que[y].push_back(make_pair(x,i));
ans[i]=;
}
dis[]=;
LCA(,); for(int i=;i<q;i++){
printf("%d\n",ans[i]);
}
}
return ;
}

poj 1986 Distance Queries(LCA)的更多相关文章

  1. poj 1986 Distance Queries(LCA:倍增/离线)

    计算树上的路径长度.input要去查poj 1984. 任意建一棵树,利用树形结构,将问题转化为u,v,lca(u,v)三个点到根的距离.输出d[u]+d[v]-2*d[lca(u,v)]. 倍增求解 ...

  2. POJ 1986 Distance Queries(Tarjan离线法求LCA)

    Distance Queries Time Limit: 2000MS   Memory Limit: 30000K Total Submissions: 12846   Accepted: 4552 ...

  3. POJ 1986 Distance Queries (Tarjan算法求最近公共祖先)

    题目链接 Description Farmer John's cows refused to run in his marathon since he chose a path much too lo ...

  4. POJ1986 Distance Queries (LCA)(倍增)

    Distance Queries Time Limit: 2000MS   Memory Limit: 30000K Total Submissions: 12950   Accepted: 4577 ...

  5. POJ - 1986 Distance Queries(离线Tarjan算法)

    1.一颗树中,给出a,b,求最近的距离.(我没考虑不联通的情况,即不是一颗树的情况) 2.用最近公共祖先来求, 记下根结点到任意一点的距离dis[],这样ans = dis[u] + dis[v] - ...

  6. POJ 1986 Distance Queries / UESTC 256 Distance Queries / CJOJ 1129 【USACO】距离咨询(最近公共祖先)

    POJ 1986 Distance Queries / UESTC 256 Distance Queries / CJOJ 1129 [USACO]距离咨询(最近公共祖先) Description F ...

  7. POJ.1986 Distance Queries ( LCA 倍增 )

    POJ.1986 Distance Queries ( LCA 倍增 ) 题意分析 给出一个N个点,M条边的信息(u,v,w),表示树上u-v有一条边,边权为w,接下来有k个询问,每个询问为(a,b) ...

  8. POJ 1986 Distance Queries LCA两点距离树

    标题来源:POJ 1986 Distance Queries 意甲冠军:给你一棵树 q第二次查询 每次你问两个点之间的距离 思路:对于2点 u v dis(u,v) = dis(root,u) + d ...

  9. POJ 1986 Distance Queries 【输入YY && LCA(Tarjan离线)】

    任意门:http://poj.org/problem?id=1986 Distance Queries Time Limit: 2000MS   Memory Limit: 30000K Total ...

随机推荐

  1. Python Cookie HTTP获取cookie并处理

    Cookie模块同样是Python标准库中的一员,它定义了一些类来解析和创建HTTP 的 cookie头部信息. 一.创建和设置Cookie >>> import Cookie #导 ...

  2. 第14/15讲- Android资源管理

    第14/15讲 Android资源管理 Android中的资源是指非代码部分,比如图片.MP3,字符串,XML文件等.在一个android工程中,res和assets是用来保存资源文件的. res和a ...

  3. PHP文件目录copy

    /**(2) PHP文件目录copy @param string $dirsrc 原目录名称字符串 @param string $dirto 目标目录名称字符串 */ function copyDir ...

  4. struts2——配置struts.xml文件

    在struts2框架中struts.xml是应当放到src的根目录,程序编译后会将struts.xml放到WEB-INF/classes目录下. Struts2在web.xml中的一般配置如下: &l ...

  5. extjs tree check 级联选择

    extjs4 tree check 级联选择 实现效果: 关键代码: function changeAllNode(node, isCheck) { allChild(node, isCheck); ...

  6. 传输中文乱码js解决方法

    encodeURI要编码两次 var a="我的"; //编译两次 //window.location.href = "http://127.0.0.1:8080/kab ...

  7. Flashback Drop实例操作

    1.Flashback DropFlashback Drop 是从Oracle 10g 开始出现的,用于恢复用户误删除的对象(包括表,索引等), 这个技术依赖于Tablespace Recycle B ...

  8. WEB服务器5--IIS中ISAPI扩展、ISAPI筛选器

    在IIS的文档中经常会提到两个术语:ISAPI扩展和ISAPI筛选器. ISAPI扩展 “ISAPI扩展(ISAPI Extension)”是一种可以添加到IIS中以增强Web服务器功能的程序,其载体 ...

  9. 利用PHP/MYSQL实现的简易微型博客(转)

    数据库:ly_php_base 表:ly_micro_blog(仅仅有一个表)字段:id,title,date,content,hits 文件: 文件 描述 default.php 默认主页.显示博文 ...

  10. C#中string.Empty和""、null的区别

    string.Empty是string类的一个静态常量,而""则表示一个空字符串. string是一种特殊的引用类型,它的null值则表示没有分配内存. 使用ILSpy反编译Str ...