这篇文章的内容接着http://blog.csdn.net/xueyunf/article/details/9214727的内容,所有还有部分函数在http://blog.csdn.net/xueyunf/article/details/9212827中,由于这个算法需要理解的内容比较多,所以我分成了3篇分别介绍,因为自己也是用了3天的时间才理解了这一经典算法。当然很犀利的童鞋也许很短时间就理解了这一算法,那么这篇文章也就不适合你了,可以跳过了,读了后不会有太多收获的。

下面我就贴出代码来,为初学者提示一点东西:

def majorityCnt(classList):
classCount ={}
for vote in classList:
if vote not in classCount.keys():
classCount[vote]=0
classCount[vote]=1
sortedClassCount = sorted(classCount.iteritems(), key=operator.itemgetter(1), reverse=True)
return sortedClassCount[0][0] def createTree(dataSet, labels):
classList = [example[-1] for example in dataSet]
if classList.count(classList[0])==len(classList):
return classList[0]
if len(dataSet[0])==1:
return majorityCnt(classList)
bestFeat = chooseBestFeatureToSplit(dataSet)
bestFeatLabel = labels[bestFeat]
myTree = {bestFeatLabel:{}}
del(labels[bestFeat])
featValues = [example[bestFeat] for example in dataSet]
uniqueVals = set(featValues)
for value in uniqueVals:
subLabels = labels[:]
myTree[bestFeatLabel][value] = createTree(splitDataSet(dataSet, bestFeat, value), subLabels)
return myTree

第一个函数为选出出现次数最多的分类名称。

第二个函数式建立决策树,也就是今天我想说的最关键的部分的代码,我们可以发现这是一个递归函数,首先我来说明跳出递归的条件,也就是类别完全相同时跳出递归,或者我们将所有的特征已经用尽则跳出递归。我们不难发现,第一个if是第一种情况,第二个if对应第二种情况。

然后我们来处理不是这两种情况的情况,每次都利用前面的选择最优划分将数据进行划分,同时将该标签插入树中,并删除该标签,然后再次将剩下的数据和标签形成的新的结构放入函数中递归进行构建子决策树,这样一棵完整的决策树就建立了。

下面给出程序运行的截图:(所谓有图有真相,无图无真相啊,我用的python的开发IDE是Eric5顺便推荐给大家)

最后给大家3篇文章所有的代码:

import math
import operator def calcShannonEnt(dataset):
numEntries = len(dataset)
labelCounts = {}
for featVec in dataset:
currentLabel = featVec[-1]
if currentLabel not in labelCounts.keys():
labelCounts[currentLabel] = 0
labelCounts[currentLabel] +=1 shannonEnt = 0.0
for key in labelCounts:
prob = float(labelCounts[key])/numEntries
shannonEnt -= prob*math.log(prob, 2)
return shannonEnt def CreateDataSet():
dataset = [[1, 1, 'yes' ],
[1, 1, 'yes' ],
[1, 0, 'no'],
[0, 1, 'no'],
[0, 1, 'no']]
labels = ['no surfacing', 'flippers']
return dataset, labels def splitDataSet(dataSet, axis, value):
retDataSet = []
for featVec in dataSet:
if featVec[axis] == value:
reducedFeatVec = featVec[:axis]
reducedFeatVec.extend(featVec[axis+1:])
retDataSet.append(reducedFeatVec) return retDataSet def chooseBestFeatureToSplit(dataSet):
numberFeatures = len(dataSet[0])-1
baseEntropy = calcShannonEnt(dataSet)
bestInfoGain = 0.0;
bestFeature = -1;
for i in range(numberFeatures):
featList = [example[i] for example in dataSet]
print(featList)
uniqueVals = set(featList)
print(uniqueVals)
newEntropy =0.0
for value in uniqueVals:
subDataSet = splitDataSet(dataSet, i, value)
prob = len(subDataSet)/float(len(dataSet))
newEntropy += prob * calcShannonEnt(subDataSet)
infoGain = baseEntropy - newEntropy
if(infoGain > bestInfoGain):
bestInfoGain = infoGain
bestFeature = i
return bestFeature def majorityCnt(classList):
classCount ={}
for vote in classList:
if vote not in classCount.keys():
classCount[vote]=0
classCount[vote]=1
sortedClassCount = sorted(classCount.iteritems(), key=operator.itemgetter(1), reverse=True)
return sortedClassCount[0][0] def createTree(dataSet, labels):
classList = [example[-1] for example in dataSet]
if classList.count(classList[0])==len(classList):
return classList[0]
if len(dataSet[0])==1:
return majorityCnt(classList)
bestFeat = chooseBestFeatureToSplit(dataSet)
bestFeatLabel = labels[bestFeat]
myTree = {bestFeatLabel:{}}
del(labels[bestFeat])
featValues = [example[bestFeat] for example in dataSet]
uniqueVals = set(featValues)
for value in uniqueVals:
subLabels = labels[:]
myTree[bestFeatLabel][value] = createTree(splitDataSet(dataSet, bestFeat, value), subLabels)
return myTree myDat,labels = CreateDataSet()
print(calcShannonEnt(myDat)) print(splitDataSet(myDat, 1, 1)) print(chooseBestFeatureToSplit(myDat)) print(createTree(myDat, labels))

[置顶] ID3算法的python实现的更多相关文章

  1. 机器学习之决策树(ID3)算法与Python实现

    机器学习之决策树(ID3)算法与Python实现 机器学习中,决策树是一个预测模型:他代表的是对象属性与对象值之间的一种映射关系.树中每个节点表示某个对象,而每个分叉路径则代表的某个可能的属性值,而每 ...

  2. 机器学习笔记----- ID3算法的python实战

    本文申明:本文原创,如有转载请申明.数据代码来自实验数据都是来自[美]Peter Harrington 写的<Machine Learning in Action>这本书,侵删. Hell ...

  3. 决策树之ID3算法实现(python)

    决策树的概念其实不难理解,下面一张图是某女生相亲时用到的决策树: 基本上可以理解为:一堆数据,附带若干属性,每一条记录最后都有一个分类(见或者不见),然后根据每种属性可以进行划分(比如年龄是>3 ...

  4. [置顶] 《算法导论》习题解答搬运&&学习笔记 索引目录

    开始学习<算法导论>了,虽然是本大部头,可能很难一下子看完,我还是会慢慢地研究的. 课后的习题和思考有些是很有挑战性的题目,我等蒻菜很难独立解决. 然后发现了Google上有挺全的algo ...

  5. [置顶] 斗地主算法的设计与实现--项目介绍&如何定义和构造一张牌

    大学期间,我在别人的基础上,写了一个简易的斗地主程序. 主要实现了面向对象设计,洗牌.发牌.判断牌型.比较牌的大小.游戏规则等算法. 通过这个斗地主小项目的练习,提高了我的面向对象设计能力,加深了对算 ...

  6. 决策树---ID3算法(介绍及Python实现)

    决策树---ID3算法   决策树: 以天气数据库的训练数据为例. Outlook Temperature Humidity Windy PlayGolf? sunny 85 85 FALSE no ...

  7. Python实现ID3算法

    自己用Python写的数据挖掘中的ID3算法,现在觉得Python是实现算法的最好工具: 先贴出ID3算法的介绍地址http://wenku.baidu.com/view/cddddaed0975f4 ...

  8. 决策树ID3算法--python实现

    参考: 统计学习方法>第五章决策树]   http://pan.baidu.com/s/1hrTscza 决策树的python实现     有完整程序     决策树(ID3.C4.5.CART ...

  9. Python四步实现决策树ID3算法,参考机器学习实战

    一.编写计算历史数据的经验熵函数 from math import log def calcShannonEnt(dataSet): numEntries = len(dataSet) labelCo ...

随机推荐

  1. python3-day1(文件操作)

    index: str.fomat() open file str.replace 一.新款str.fomat() 1.>>> '12'.zfill(5) '00012' 2.> ...

  2. View中取设置了Tag的UILabel

    UILabel *badge = (UILabel *)[self.view viewWithTag:];

  3. ios获取权限

    ios获取权限 by 伍雪颖 -(void)requestRecord{ [[AVAudioSession sharedInstance] requestRecordPermission:^(BOOL ...

  4. C++ 报错 R6030 CRT not initialized

    昨天,在写一个算法的时候,报错R6030 CRT not initialized. 认真检查发现,是出了比较低级的错误. 一. 会出错的代码,编译的时候不会报错,执行过程中报R6030 CRT not ...

  5. [Protractor] Protractor Interactive with elementor

    Install: npm install -g elementor Then run: webdriver-manager start Lets say if we want to test 'htt ...

  6. BASE64Encoder问题类

    于myeclipse于BASE64Encoder提示类不出现 对当前右击project-->Build Path--->Configure Build Path--->Java Bu ...

  7. 初始——第一款个人开发上线app store

    最初学习iOS开发时就听人建议,程序员应该有自己的博客,来记录每天的收获,于人于己都是一件很有意义的事.但当初作为菜鸟一枚,自认为对一些知识的认识尚浅,写博客这种高大上的事和自己八竿子打不着. 现如今 ...

  8. jxl读写excel的方法

    jxl 只有excel基本的操作,代码操作比较方便,一般使用jxl就够了,对图片支持较好 poi功能比jxl强大但是比较吃内存,支持计算公式 具体参考链接    http://www.cnblogs. ...

  9. Unable to run mksdcard SDK tool.

    Ubuntu 14.04,安装android studio后运行出错,sdk manager不能正常运行 Unable to run mksdcard SDK tool. 原因,缺少运行需要的库:li ...

  10. DotDensityRenderer

    关键之处在于获取每个点所代表的的值 这里使用geodatabase类库中idatastatistic接口进行统计字段,再将结果传递给esrisysytem.istatisticsResult进行. 需 ...