[置顶] ID3算法的python实现
这篇文章的内容接着http://blog.csdn.net/xueyunf/article/details/9214727的内容,所有还有部分函数在http://blog.csdn.net/xueyunf/article/details/9212827中,由于这个算法需要理解的内容比较多,所以我分成了3篇分别介绍,因为自己也是用了3天的时间才理解了这一经典算法。当然很犀利的童鞋也许很短时间就理解了这一算法,那么这篇文章也就不适合你了,可以跳过了,读了后不会有太多收获的。
下面我就贴出代码来,为初学者提示一点东西:
def majorityCnt(classList):
classCount ={}
for vote in classList:
if vote not in classCount.keys():
classCount[vote]=0
classCount[vote]=1
sortedClassCount = sorted(classCount.iteritems(), key=operator.itemgetter(1), reverse=True)
return sortedClassCount[0][0] def createTree(dataSet, labels):
classList = [example[-1] for example in dataSet]
if classList.count(classList[0])==len(classList):
return classList[0]
if len(dataSet[0])==1:
return majorityCnt(classList)
bestFeat = chooseBestFeatureToSplit(dataSet)
bestFeatLabel = labels[bestFeat]
myTree = {bestFeatLabel:{}}
del(labels[bestFeat])
featValues = [example[bestFeat] for example in dataSet]
uniqueVals = set(featValues)
for value in uniqueVals:
subLabels = labels[:]
myTree[bestFeatLabel][value] = createTree(splitDataSet(dataSet, bestFeat, value), subLabels)
return myTree
第一个函数为选出出现次数最多的分类名称。
第二个函数式建立决策树,也就是今天我想说的最关键的部分的代码,我们可以发现这是一个递归函数,首先我来说明跳出递归的条件,也就是类别完全相同时跳出递归,或者我们将所有的特征已经用尽则跳出递归。我们不难发现,第一个if是第一种情况,第二个if对应第二种情况。
然后我们来处理不是这两种情况的情况,每次都利用前面的选择最优划分将数据进行划分,同时将该标签插入树中,并删除该标签,然后再次将剩下的数据和标签形成的新的结构放入函数中递归进行构建子决策树,这样一棵完整的决策树就建立了。
下面给出程序运行的截图:(所谓有图有真相,无图无真相啊,我用的python的开发IDE是Eric5顺便推荐给大家)
最后给大家3篇文章所有的代码:
import math
import operator def calcShannonEnt(dataset):
numEntries = len(dataset)
labelCounts = {}
for featVec in dataset:
currentLabel = featVec[-1]
if currentLabel not in labelCounts.keys():
labelCounts[currentLabel] = 0
labelCounts[currentLabel] +=1 shannonEnt = 0.0
for key in labelCounts:
prob = float(labelCounts[key])/numEntries
shannonEnt -= prob*math.log(prob, 2)
return shannonEnt def CreateDataSet():
dataset = [[1, 1, 'yes' ],
[1, 1, 'yes' ],
[1, 0, 'no'],
[0, 1, 'no'],
[0, 1, 'no']]
labels = ['no surfacing', 'flippers']
return dataset, labels def splitDataSet(dataSet, axis, value):
retDataSet = []
for featVec in dataSet:
if featVec[axis] == value:
reducedFeatVec = featVec[:axis]
reducedFeatVec.extend(featVec[axis+1:])
retDataSet.append(reducedFeatVec) return retDataSet def chooseBestFeatureToSplit(dataSet):
numberFeatures = len(dataSet[0])-1
baseEntropy = calcShannonEnt(dataSet)
bestInfoGain = 0.0;
bestFeature = -1;
for i in range(numberFeatures):
featList = [example[i] for example in dataSet]
print(featList)
uniqueVals = set(featList)
print(uniqueVals)
newEntropy =0.0
for value in uniqueVals:
subDataSet = splitDataSet(dataSet, i, value)
prob = len(subDataSet)/float(len(dataSet))
newEntropy += prob * calcShannonEnt(subDataSet)
infoGain = baseEntropy - newEntropy
if(infoGain > bestInfoGain):
bestInfoGain = infoGain
bestFeature = i
return bestFeature def majorityCnt(classList):
classCount ={}
for vote in classList:
if vote not in classCount.keys():
classCount[vote]=0
classCount[vote]=1
sortedClassCount = sorted(classCount.iteritems(), key=operator.itemgetter(1), reverse=True)
return sortedClassCount[0][0] def createTree(dataSet, labels):
classList = [example[-1] for example in dataSet]
if classList.count(classList[0])==len(classList):
return classList[0]
if len(dataSet[0])==1:
return majorityCnt(classList)
bestFeat = chooseBestFeatureToSplit(dataSet)
bestFeatLabel = labels[bestFeat]
myTree = {bestFeatLabel:{}}
del(labels[bestFeat])
featValues = [example[bestFeat] for example in dataSet]
uniqueVals = set(featValues)
for value in uniqueVals:
subLabels = labels[:]
myTree[bestFeatLabel][value] = createTree(splitDataSet(dataSet, bestFeat, value), subLabels)
return myTree myDat,labels = CreateDataSet()
print(calcShannonEnt(myDat)) print(splitDataSet(myDat, 1, 1)) print(chooseBestFeatureToSplit(myDat)) print(createTree(myDat, labels))
[置顶] ID3算法的python实现的更多相关文章
- 机器学习之决策树(ID3)算法与Python实现
机器学习之决策树(ID3)算法与Python实现 机器学习中,决策树是一个预测模型:他代表的是对象属性与对象值之间的一种映射关系.树中每个节点表示某个对象,而每个分叉路径则代表的某个可能的属性值,而每 ...
- 机器学习笔记----- ID3算法的python实战
本文申明:本文原创,如有转载请申明.数据代码来自实验数据都是来自[美]Peter Harrington 写的<Machine Learning in Action>这本书,侵删. Hell ...
- 决策树之ID3算法实现(python)
决策树的概念其实不难理解,下面一张图是某女生相亲时用到的决策树: 基本上可以理解为:一堆数据,附带若干属性,每一条记录最后都有一个分类(见或者不见),然后根据每种属性可以进行划分(比如年龄是>3 ...
- [置顶] 《算法导论》习题解答搬运&&学习笔记 索引目录
开始学习<算法导论>了,虽然是本大部头,可能很难一下子看完,我还是会慢慢地研究的. 课后的习题和思考有些是很有挑战性的题目,我等蒻菜很难独立解决. 然后发现了Google上有挺全的algo ...
- [置顶] 斗地主算法的设计与实现--项目介绍&如何定义和构造一张牌
大学期间,我在别人的基础上,写了一个简易的斗地主程序. 主要实现了面向对象设计,洗牌.发牌.判断牌型.比较牌的大小.游戏规则等算法. 通过这个斗地主小项目的练习,提高了我的面向对象设计能力,加深了对算 ...
- 决策树---ID3算法(介绍及Python实现)
决策树---ID3算法 决策树: 以天气数据库的训练数据为例. Outlook Temperature Humidity Windy PlayGolf? sunny 85 85 FALSE no ...
- Python实现ID3算法
自己用Python写的数据挖掘中的ID3算法,现在觉得Python是实现算法的最好工具: 先贴出ID3算法的介绍地址http://wenku.baidu.com/view/cddddaed0975f4 ...
- 决策树ID3算法--python实现
参考: 统计学习方法>第五章决策树] http://pan.baidu.com/s/1hrTscza 决策树的python实现 有完整程序 决策树(ID3.C4.5.CART ...
- Python四步实现决策树ID3算法,参考机器学习实战
一.编写计算历史数据的经验熵函数 from math import log def calcShannonEnt(dataSet): numEntries = len(dataSet) labelCo ...
随机推荐
- WPF最基本的4个引用
Windowsbase Windows基本类库 PresentationCore wpf核心类库 PresentationFramework wpf框架 System.Axml 系统类库
- How to check for and disable Java in OS X
Java used to be deeply embedded in OS X, but in recent versions of the OS it's an optional install. ...
- 利用PHPExcel转Excel柱形图
这在附还有一个转柱形图的效果及代码. 原PHP报表效果: 转成Excel后的效果: 附上代码: <? php /** * PHPExcel * * Copyright (C) 2006 - 20 ...
- ArrayList的分析(转)
一. ArrayList概述: ArrayList是基于数组实现的,是一个动态数组,其容量能自动增长,类似于C语言中的动态申请内存,动态增长内存. ArrayList不是线程安全的,只能用在单线程环境 ...
- js实现求平均数功能
今天在项目中遇到了一个求平均值的需求,大致需求就是,页面上面有四个input框,失去焦点就计算平均值,结果保留两位小数,并输出在页面上.不多说了,直接奉上代码,如有更好思路或者想法,都欢迎大家和我讨论 ...
- 第二章 Android Studio使用第三方模拟器
1.为什么要使用第三方模拟器 Android Studio自带模拟器,相对Eclipse来说项目启动速度的确快了很多倍,提高了开发效率.但和第三方模拟器进行对比的话,还是第三方的模拟器运行速度更快些. ...
- UIView的常用方法
bringSubviewToFront: 把指定的子视图移动到顶层 - (void)bringSubviewToFront:(UIView *)view 参数 view 需要移到顶层的视图 conve ...
- Linq的查询操作符
Linq有表达式语法和调用方法的语法.两者是可以结合使用,通常情况下也都是结合使用.表达式语法看上去比较清晰而调用方法的语法实现的功能更多,在此文章中介绍的是表达式语法.方法语法可以看System.L ...
- java web移植 遇到Project facet Java version 1.7 is not supported
在移植eclipse项目时,如果遇到 "Project facet Java version 1.7 is not supported." 项目中的jdk1.7不支持.说明项目是其 ...
- 操作数据表中的记录——SELECT (where表达式、GROUP BY、HAVING、LIMIT)
原文链接:http://www.ifyao.com/2015/01/26/%E6%93%8D%E4%BD%9C%E6%95%B0%E6%8D%AE%E8%A1%A8%E4%B8%AD%E7%9A%84 ...