Matrix
Time Limit: 3000MS   Memory Limit: 65536K
Total Submissions: 16950   Accepted: 6369

Description

Given an N*N matrix A, whose elements are either 0 or 1. A[i, j] means the number in the i-th row and j-th column. Initially we have A[i, j] = 0 (1 <= i, j <= N).

We can change the matrix in the following way. Given a rectangle whose upper-left corner is (x1, y1) and lower-right corner is (x2, y2), we change all the elements in the rectangle by using "not" operation (if it is a '0' then change it into '1' otherwise change it into '0'). To maintain the information of the matrix, you are asked to write a program to receive and execute two kinds of instructions.

1. C x1 y1 x2 y2 (1 <= x1 <= x2 <= n, 1 <= y1 <= y2 <= n) changes the matrix by using the rectangle whose upper-left corner is (x1, y1) and lower-right corner is (x2, y2). 
2. Q x y (1 <= x, y <= n) querys A[x, y]. 

Input

The first line of the input is an integer X (X <= 10) representing the number of test cases. The following X blocks each represents a test case.

The first line of each block contains two numbers N and T (2 <= N <= 1000, 1 <= T <= 50000) representing the size of the matrix and the number of the instructions. The following T lines each represents an instruction having the format "Q x y" or "C x1 y1 x2 y2", which has been described above.

Output

For each querying output one line, which has an integer representing A[x, y].

There is a blank line between every two continuous test cases.

Sample Input

1
2 10
C 2 1 2 2
Q 2 2
C 2 1 2 1
Q 1 1
C 1 1 2 1
C 1 2 1 2
C 1 1 2 2
Q 1 1
C 1 1 2 1
Q 2 1

Sample Output

1
0
0
1

Source

POJ Monthly,Lou Tiancheng
 
代码:
采用树状数组第二种方法
采用更新向下,统计向上的方法....楼教主这道题出的还是比较新颖的......
代码:438ms
 #include<stdio.h>
#include<string.h>
#include<stdlib.h>
#define maxn 1005
#define lowbit(x) ((x)&(-x))
int aa[maxn][maxn];
int nn;
void ope(int x ,int y ,int val)
{
for(int i=x ;i> ;i-=lowbit(i))
{
for(int j=y ;j> ;j-=lowbit(j))
{
aa[i][j]+=val;
}
}
}
int clac(int x,int y)
{
int ans=;
for(int i=x;i<=nn ;i+=lowbit(i))
{
for(int j=y ;j<=nn ;j+=lowbit(j))
{
ans+=aa[i][j];
}
}
return ans;
}
struct node
{
int x;
int y;
}; int main()
{
int tt,xx;
char str[];
node sa,sb;
scanf("%d",&xx);
while(xx--)
{
memset(aa,,sizeof(aa));
scanf("%d%d",&nn,&tt);
while(tt--)
{
scanf("%s",&str);
if(str[]=='C')
{
scanf("%d%d%d%d",&sa.x,&sa.y,&sb.x,&sb.y);
sa.x--; //左上角全体加1
sa.y--;
ope(sb.x,sb.y,);
ope(sa.x,sb.y,-);
ope(sb.x,sa.y,-);
ope(sa.x,sa.y,);
}
else
{
scanf("%d%d",&sa.x,&sa.y);
printf("%d\n",clac(sa.x,sa.y)&);
}
}
printf("\n");
}
return ;
}

改进版..
代码:

 #include<stdio.h>
#include<string.h>
#include<stdlib.h>
#define maxn 1005
#define lowbit(x) ((x)&(-x))
int aa[maxn][maxn];
int nn;
void ope(int x ,int y )
{
for(int i=x ;i> ;i-=lowbit(i))
{
for(int j=y ;j> ;j-=lowbit(j))
{
aa[i][j]=aa[i][j]^;
}
}
}
int clac(int x,int y)
{
int ans=;
for(int i=x;i<=nn ;i+=lowbit(i))
{
for(int j=y ;j<=nn ;j+=lowbit(j))
{
ans+=aa[i][j];
}
}
return ans;
}
struct node
{
int x;
int y;
}; int main()
{
int tt,xx;
char str[];
node sa,sb;
scanf("%d",&xx);
while(xx--)
{
memset(aa,,sizeof(aa));
scanf("%d%d",&nn,&tt);
while(tt--)
{
scanf("%s",&str);
if(str[]=='C')
{
scanf("%d%d%d%d",&sa.x,&sa.y,&sb.x,&sb.y);
sa.x--; //左上角全体加1
sa.y--;
ope(sb.x,sb.y);
ope(sa.x,sb.y);
ope(sb.x,sa.y);
ope(sa.x,sa.y);
}
else
{
scanf("%d%d",&sa.x,&sa.y);
printf("%d\n",clac(sa.x,sa.y)&);
}
}
printf("\n");
}
return ;
}

采用树状数组第一种方法

传统的方法:

代码:435ms

 #include<stdio.h>
#include<string.h>
#include<stdlib.h>
#define maxn 1005
#define lowbit(x) ((x)&(-x))
int aa[maxn][maxn];
int nn;
void ope(int x ,int y )
{
for(int i=x ;i<=nn ;i+=lowbit(i))
for(int j=y ;j<=nn ;j+=lowbit(j))
aa[i][j]=aa[i][j]^;
}
int clac(int x,int y)
{
int ans=,i,j;
for(i=x;i> ;i-=lowbit(i))
for(j=y ;j> ;j-=lowbit(j))
ans+=aa[i][j];
return ans;
}
struct node
{
int x,y;
};
int main()
{
int tt,xx;
char str[];
node sa,sb;
scanf("%d",&xx);
while(xx--)
{
memset(aa,,sizeof(aa));
scanf("%d%d",&nn,&tt);
while(tt--)
{
scanf("%s",&str);
if(str[]=='C')
{
scanf("%d%d%d%d",&sa.x,&sa.y,&sb.x,&sb.y);
sb.x++; //左上角全体加1
sb.y++;
ope(sb.x,sb.y);
ope(sa.x,sb.y);
ope(sb.x,sa.y);
ope(sa.x,sa.y);
}
else
{
scanf("%d%d",&sa.x,&sa.y);
printf("%d\n",clac(sa.x,sa.y)&);
}
}
printf("\n");
}
return ;
}
 
 

poj----2155 Matrix(二维树状数组第二类)的更多相关文章

  1. POJ 2155 Matrix(二维树状数组,绝对具体)

    Matrix Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 20599   Accepted: 7673 Descripti ...

  2. poj 2155 Matrix (二维树状数组)

    题意:给你一个矩阵开始全是0,然后给你两种指令,第一种:C x1,y1,x2,y2 就是将左上角为x1,y1,右下角为x2,y2,的这个矩阵内的数字全部翻转,0变1,1变0 第二种:Q x1 y1,输 ...

  3. POJ 2155:Matrix 二维树状数组

    Matrix Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 21757   Accepted: 8141 Descripti ...

  4. [poj2155]Matrix(二维树状数组)

    Matrix Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 25004   Accepted: 9261 Descripti ...

  5. 【poj2155】Matrix(二维树状数组区间更新+单点查询)

    Description Given an N*N matrix A, whose elements are either 0 or 1. A[i, j] means the number in the ...

  6. POJ 2029 (二维树状数组)题解

    思路: 大力出奇迹,先用二维树状数组存,然后暴力枚举 算某个矩形区域的值的示意图如下,代码在下面慢慢找... 代码: #include<cstdio> #include<map> ...

  7. poj 2155 B - Matrix 二维树状数组

    #include<iostream> #include<string> #include<string.h> #include<cstdio> usin ...

  8. POJ2155:Matrix(二维树状数组,经典)

    Description Given an N*N matrix A, whose elements are either 0 or 1. A[i, j] means the number in the ...

  9. Matrix 二维树状数组的第二类应用

    Matrix Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 17976   Accepted: 6737 Descripti ...

随机推荐

  1. springmvc最简单的搭建,初学者必看

    web.xml <?xml version="1.0" encoding="UTF-8"?> <web-app xmlns:xsi=" ...

  2. Java中间件:淘宝网系统高性能利器

    [TechTarget中国原创]淘宝网是亚太最大的网络零售商圈,其知名度毋庸置疑,吸引着越来越多的消费者从街头移步这里,成为其忠实粉丝.如此多的用户和交易量,也意味着海量的信息处理,其背后的IT架构的 ...

  3. 表单提交的3种方式,http post的contentType

    application/x-www-form-urlencoded:窗体数据被编码为名称/值对.这是标准的编码格式.这是默认的方式 multipart/form-data:窗体数据被编码为一条消息,页 ...

  4. Android之LogUtil

    提供debug与release的时候是否屏蔽打印信息,把信息选择性的进行保存,可以是否自动保存crash的堆栈信息.来自github上的一个开源项目,https://github.com/syxc/L ...

  5. ELK+Filebeat 安装配置入门

    本文地址 http://www.cnblogs.com/jasonxuli/p/6397244.html   https://www.elastic.co 上,elasticsearch,logsta ...

  6. go语言基础之append函数的使用

    1.append函数的使用 作用:在原切片的末尾添加元素 示例: package main //必须有个main包 import "fmt" func main() { s1 := ...

  7. Android wifi无线调试App新玩法ADB WIFI

    Wifi 调试App已经不是什么新鲜的事情了,之前也看过不少,不是使用麻烦就是需要root权限,今个我给大家介绍一款好用的android studio 插件--ADB WIFI. 安装 setting ...

  8. C# WCF 完整实例,winform 窗体作为 宿主

    上一次提到,我们的WCF程序宿主是发布到IIS上面的.虽然这样做未尝不可,不过不便于我们进行“开始”或“停止”WCF服务的操作.所以再次尝试了编写以窗体应用程序作为WCF服务宿主的方式,并取得了成功. ...

  9. C# 事件(Event)

    事件(Event) 基本上说是一个用户操作,如按键.点击.鼠标移动等等,或者是一些出现,如系统生成的通知.应用程序需要在事件发生时响应事件.例如,中断.事件是用于进程间通信. 通过事件使用委托 事件在 ...

  10. IE 之 应用小结

    1. 导出收藏夹(IE11) 导出:打开浏览器, 文件(F) → 导入和导出(M)... → 导出到文件(E) → 指定导出内容 → 指定保存路径导入:打开浏览器,文件(F) → 导入和导出(M).. ...