Matrix
Time Limit: 3000MS   Memory Limit: 65536K
Total Submissions: 16950   Accepted: 6369

Description

Given an N*N matrix A, whose elements are either 0 or 1. A[i, j] means the number in the i-th row and j-th column. Initially we have A[i, j] = 0 (1 <= i, j <= N).

We can change the matrix in the following way. Given a rectangle whose upper-left corner is (x1, y1) and lower-right corner is (x2, y2), we change all the elements in the rectangle by using "not" operation (if it is a '0' then change it into '1' otherwise change it into '0'). To maintain the information of the matrix, you are asked to write a program to receive and execute two kinds of instructions.

1. C x1 y1 x2 y2 (1 <= x1 <= x2 <= n, 1 <= y1 <= y2 <= n) changes the matrix by using the rectangle whose upper-left corner is (x1, y1) and lower-right corner is (x2, y2). 
2. Q x y (1 <= x, y <= n) querys A[x, y]. 

Input

The first line of the input is an integer X (X <= 10) representing the number of test cases. The following X blocks each represents a test case.

The first line of each block contains two numbers N and T (2 <= N <= 1000, 1 <= T <= 50000) representing the size of the matrix and the number of the instructions. The following T lines each represents an instruction having the format "Q x y" or "C x1 y1 x2 y2", which has been described above.

Output

For each querying output one line, which has an integer representing A[x, y].

There is a blank line between every two continuous test cases.

Sample Input

1
2 10
C 2 1 2 2
Q 2 2
C 2 1 2 1
Q 1 1
C 1 1 2 1
C 1 2 1 2
C 1 1 2 2
Q 1 1
C 1 1 2 1
Q 2 1

Sample Output

1
0
0
1

Source

POJ Monthly,Lou Tiancheng
 
代码:
采用树状数组第二种方法
采用更新向下,统计向上的方法....楼教主这道题出的还是比较新颖的......
代码:438ms
 #include<stdio.h>
#include<string.h>
#include<stdlib.h>
#define maxn 1005
#define lowbit(x) ((x)&(-x))
int aa[maxn][maxn];
int nn;
void ope(int x ,int y ,int val)
{
for(int i=x ;i> ;i-=lowbit(i))
{
for(int j=y ;j> ;j-=lowbit(j))
{
aa[i][j]+=val;
}
}
}
int clac(int x,int y)
{
int ans=;
for(int i=x;i<=nn ;i+=lowbit(i))
{
for(int j=y ;j<=nn ;j+=lowbit(j))
{
ans+=aa[i][j];
}
}
return ans;
}
struct node
{
int x;
int y;
}; int main()
{
int tt,xx;
char str[];
node sa,sb;
scanf("%d",&xx);
while(xx--)
{
memset(aa,,sizeof(aa));
scanf("%d%d",&nn,&tt);
while(tt--)
{
scanf("%s",&str);
if(str[]=='C')
{
scanf("%d%d%d%d",&sa.x,&sa.y,&sb.x,&sb.y);
sa.x--; //左上角全体加1
sa.y--;
ope(sb.x,sb.y,);
ope(sa.x,sb.y,-);
ope(sb.x,sa.y,-);
ope(sa.x,sa.y,);
}
else
{
scanf("%d%d",&sa.x,&sa.y);
printf("%d\n",clac(sa.x,sa.y)&);
}
}
printf("\n");
}
return ;
}

改进版..
代码:

 #include<stdio.h>
#include<string.h>
#include<stdlib.h>
#define maxn 1005
#define lowbit(x) ((x)&(-x))
int aa[maxn][maxn];
int nn;
void ope(int x ,int y )
{
for(int i=x ;i> ;i-=lowbit(i))
{
for(int j=y ;j> ;j-=lowbit(j))
{
aa[i][j]=aa[i][j]^;
}
}
}
int clac(int x,int y)
{
int ans=;
for(int i=x;i<=nn ;i+=lowbit(i))
{
for(int j=y ;j<=nn ;j+=lowbit(j))
{
ans+=aa[i][j];
}
}
return ans;
}
struct node
{
int x;
int y;
}; int main()
{
int tt,xx;
char str[];
node sa,sb;
scanf("%d",&xx);
while(xx--)
{
memset(aa,,sizeof(aa));
scanf("%d%d",&nn,&tt);
while(tt--)
{
scanf("%s",&str);
if(str[]=='C')
{
scanf("%d%d%d%d",&sa.x,&sa.y,&sb.x,&sb.y);
sa.x--; //左上角全体加1
sa.y--;
ope(sb.x,sb.y);
ope(sa.x,sb.y);
ope(sb.x,sa.y);
ope(sa.x,sa.y);
}
else
{
scanf("%d%d",&sa.x,&sa.y);
printf("%d\n",clac(sa.x,sa.y)&);
}
}
printf("\n");
}
return ;
}

采用树状数组第一种方法

传统的方法:

代码:435ms

 #include<stdio.h>
#include<string.h>
#include<stdlib.h>
#define maxn 1005
#define lowbit(x) ((x)&(-x))
int aa[maxn][maxn];
int nn;
void ope(int x ,int y )
{
for(int i=x ;i<=nn ;i+=lowbit(i))
for(int j=y ;j<=nn ;j+=lowbit(j))
aa[i][j]=aa[i][j]^;
}
int clac(int x,int y)
{
int ans=,i,j;
for(i=x;i> ;i-=lowbit(i))
for(j=y ;j> ;j-=lowbit(j))
ans+=aa[i][j];
return ans;
}
struct node
{
int x,y;
};
int main()
{
int tt,xx;
char str[];
node sa,sb;
scanf("%d",&xx);
while(xx--)
{
memset(aa,,sizeof(aa));
scanf("%d%d",&nn,&tt);
while(tt--)
{
scanf("%s",&str);
if(str[]=='C')
{
scanf("%d%d%d%d",&sa.x,&sa.y,&sb.x,&sb.y);
sb.x++; //左上角全体加1
sb.y++;
ope(sb.x,sb.y);
ope(sa.x,sb.y);
ope(sb.x,sa.y);
ope(sa.x,sa.y);
}
else
{
scanf("%d%d",&sa.x,&sa.y);
printf("%d\n",clac(sa.x,sa.y)&);
}
}
printf("\n");
}
return ;
}
 
 

poj----2155 Matrix(二维树状数组第二类)的更多相关文章

  1. POJ 2155 Matrix(二维树状数组,绝对具体)

    Matrix Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 20599   Accepted: 7673 Descripti ...

  2. poj 2155 Matrix (二维树状数组)

    题意:给你一个矩阵开始全是0,然后给你两种指令,第一种:C x1,y1,x2,y2 就是将左上角为x1,y1,右下角为x2,y2,的这个矩阵内的数字全部翻转,0变1,1变0 第二种:Q x1 y1,输 ...

  3. POJ 2155:Matrix 二维树状数组

    Matrix Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 21757   Accepted: 8141 Descripti ...

  4. [poj2155]Matrix(二维树状数组)

    Matrix Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 25004   Accepted: 9261 Descripti ...

  5. 【poj2155】Matrix(二维树状数组区间更新+单点查询)

    Description Given an N*N matrix A, whose elements are either 0 or 1. A[i, j] means the number in the ...

  6. POJ 2029 (二维树状数组)题解

    思路: 大力出奇迹,先用二维树状数组存,然后暴力枚举 算某个矩形区域的值的示意图如下,代码在下面慢慢找... 代码: #include<cstdio> #include<map> ...

  7. poj 2155 B - Matrix 二维树状数组

    #include<iostream> #include<string> #include<string.h> #include<cstdio> usin ...

  8. POJ2155:Matrix(二维树状数组,经典)

    Description Given an N*N matrix A, whose elements are either 0 or 1. A[i, j] means the number in the ...

  9. Matrix 二维树状数组的第二类应用

    Matrix Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 17976   Accepted: 6737 Descripti ...

随机推荐

  1. Python3.6学习笔记(三)

    面向对象编程 面向对象编程 Object Oriented Programming 简称 OOP,是一种程序设计思想.OOP把对象作为程序的基本单元,一个对象包含了数据和操作数据的函数. 面向过程的程 ...

  2. 对JVM还一知半解

    对JVM还一知半解?这篇文章让你彻底搞定JVM 摘要: 对于Java开发者来说,想把自身能力提升到更高层次,某些JVM相关知识应该是优先级很高的.比如说GC策略,JVM调优. 就我在工作中遇到的情况来 ...

  3. QT学习:c++解析html相关

    原来我做爬虫的时候,对页面进行解析的时候总是用很简单粗暴的方法,直接找规律.后来在网上看到了gumbo,尝试了一下,发现确实很好用,所以向大家推荐一下. 以下转自:http://blog.csdn.n ...

  4. Linux监听进程是否存在,并加入定时任务

    前言 我们在linux主机上可能需要一直运行某一服务,如果关机后或者误杀,使得服务停止,从而影响日常的任务.比如一BI项目数据库的抽取,使用Taskctl调度,在每天固定时间进行数据的抽取,如果主机上 ...

  5. SQL Server’s Storage Top 10 Best Practices

    好文章, 简明扼要. Storage Top 10 Best Practices http://technet.microsoft.com/en-us/library/cc966534.aspx

  6. dp 密度 分辨率 屏幕 状态栏 标题栏 适配

    一篇总结的非常完善的博文:http://www.jianshu.com/p/ec5a1a30694b 屏幕像素参数相关信息表格 屏幕级别 像素密度 每英寸像素数   通常分辨率 分辨率别称    默认 ...

  7. 【Other】最近在研究的, Java/Springboot/RPC/JPA等

    我的Springboot框架,欢迎关注: https://github.com/junneyang/common-web-starter Dubbo-大波-服务化框架 dubbo_百度搜索 Dubbo ...

  8. 搜狐视频Redis私有云平台CacheCloud

    一.CacheCloud是做什么的 CacheCloud提供一个Redis云管理平台:实现多种类型(Redis Standalone.Redis Sentinel.Redis Cluster)自动部署 ...

  9. 相似qq的IM聊天应用源代码

    这个是IM聊天应用源代码,该应用IM支持实现XMPP,以及图片和表情,语音.消息回执等功能,基本覆盖了常见的im应用的功能了,大家能够參考一下吧. 源代码下载:http://code.662p.com ...

  10. VS编程常见的编译和链接错误

    常见错误1: Error 2 error LNK1120: 1 unresolved externals Error 1 error LNK2019: unresolved external symb ...