Dirichlet's Theorem on Arithmetic Progressions
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 13636   Accepted: 6808

Description

If a and d are relatively prime positive integers, the arithmetic sequence beginning with a and increasing by d, i.e., aa + da + 2da + 3da + 4d, ..., contains infinitely many prime numbers. This fact is known as Dirichlet's Theorem on Arithmetic Progressions, which had been conjectured by Johann Carl Friedrich Gauss (1777 - 1855) and was proved by Johann Peter Gustav Lejeune Dirichlet (1805 - 1859) in 1837.

For example, the arithmetic sequence beginning with 2 and increasing by 3, i.e.,

2, 5, 8, 11, 14, 17, 20, 23, 26, 29, 32, 35, 38, 41, 44, 47, 50, 53, 56, 59, 62, 65, 68, 71, 74, 77, 80, 83, 86, 89, 92, 95, 98, ... ,

contains infinitely many prime numbers

2, 5, 11, 17, 23, 29, 41, 47, 53, 59, 71, 83, 89, ... .

Your mission, should you decide to accept it, is to write a program to find the nth prime number in this arithmetic sequence for given positive integers ad, and n.

Input

The input is a sequence of datasets. A dataset is a line containing three positive integers ad, and n separated by a space. a and d are relatively prime. You may assume a <= 9307, d <= 346, and n <= 210.

The end of the input is indicated by a line containing three zeros separated by a space. It is not a dataset.

Output

The output should be composed of as many lines as the number of the input datasets. Each line should contain a single integer and should never contain extra characters.

The output integer corresponding to a dataset adn should be the nth prime number among those contained in the arithmetic sequence beginning with a and increasing by d.

FYI, it is known that the result is always less than 106 (one million) under this input condition.

Sample Input

367 186 151
179 10 203
271 37 39
103 230 1
27 104 185
253 50 85
1 1 1
9075 337 210
307 24 79
331 221 177
259 170 40
269 58 102
0 0 0

Sample Output

92809
6709
12037
103
93523
14503
2
899429
5107
412717
22699
25673

Source

 
 
 
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<map>
#include<algorithm> using namespace std; const int N=; int prime[N],isprime[N]; void getPrime(){
for(int i=;i<N;i++)
prime[i]=;
prime[]=prime[]=;
int cnt=;
for(int i=;i<N;i++){
if(prime[i])
isprime[++cnt]=i;
for(int j=;j<=cnt && i*isprime[j]<N;j++){
prime[i*isprime[j]]=;
if(i%isprime[j]==)
break;
}
}
} int main(){ //freopen("input.txt","r",stdin); getPrime();
int a,d,n;
while(~scanf("%d%d%d",&a,&d,&n)){
if(a== && d== && n==)
break;
int cnt=,tmp=a;
if(prime[tmp])
cnt++;
while(cnt<n){
tmp+=d;
if(prime[tmp])
cnt++;
}
printf("%d\n",tmp);
}
return ;
}

POJ 3006 Dirichlet's Theorem on Arithmetic Progressions (素数)的更多相关文章

  1. POJ 3006 Dirichlet's Theorem on Arithmetic Progressions 素数 难度:0

    http://poj.org/problem?id=3006 #include <cstdio> using namespace std; bool pm[1000002]; bool u ...

  2. poj 3006 Dirichlet's Theorem on Arithmetic Progressions【素数问题】

    题目地址:http://poj.org/problem?id=3006 刷了好多水题,来找回状态...... Dirichlet's Theorem on Arithmetic Progression ...

  3. poj 3006 Dirichlet's Theorem on Arithmetic Progressions

    题目大意:a和d是两个互质的数,则序列a,a+d,a+2d,a+3d,a+4d ...... a+nd 中有无穷多个素数,给出a和d,找出序列中的第n个素数 #include <cstdio&g ...

  4. Dirichlet's Theorem on Arithmetic Progressions 分类: POJ 2015-06-12 21:07 7人阅读 评论(0) 收藏

    Dirichlet's Theorem on Arithmetic Progressions Time Limit: 1000MS   Memory Limit: 65536K Total Submi ...

  5. Dirichlet's Theorem on Arithmetic Progressions POJ - 3006 线性欧拉筛

    题意 给出a d n    给出数列 a,a+d,a+2d,a+3d......a+kd 问第n个数是几 保证答案不溢出 直接线性筛模拟即可 #include<cstdio> #inclu ...

  6. Dirichlet's Theorem on Arithmetic Progressions

    http://poj.org/problem?id=3006 #include<stdio.h> #include<math.h> int is_prime(int n) { ...

  7. 【POJ3006】Dirichlet's Theorem on Arithmetic Progressions(素数筛法)

    简单的暴力筛法就可. #include <iostream> #include <cstring> #include <cmath> #include <cc ...

  8. (素数求解)I - Dirichlet&#39;s Theorem on Arithmetic Progressions(1.5.5)

    Time Limit:1000MS     Memory Limit:65536KB     64bit IO Format:%I64d & %I64u Submit cid=1006#sta ...

  9. Dirichlet's Theorem on Arithmetic Progression

    poj3006 Dirichlet's Theorem on Arithmetic Progressions 很显然这是一题有关于素数的题目. 注意数据的范围,爆搜超时无误. 这里要用到筛选法求素数. ...

随机推荐

  1. Cocos2dx 3.0 过渡篇(二十七)C++11多线程std::thread的简单使用(下)

    本篇接上篇继续讲:上篇传送门:http://blog.csdn.net/star530/article/details/24186783 简单的东西我都说的几乎相同了,想挖点深的差点把自己给填进去. ...

  2. 数学图形之SineSurface与粽子曲面

    SineSurface直译为正弦曲面.这有可能和你想象的正弦曲线不一样.如果把正弦曲线绕Y轴旋转,得到的该是正弦波曲面.这个曲面与上一节中的罗马曲面有些相似,那个是被捏过的正四面体,这个则是个被捏过正 ...

  3. [leetcode]Convert Sorted Array to Binary Search Tree @ Python

    原题地址:http://oj.leetcode.com/problems/convert-sorted-array-to-binary-search-tree/ 题意:将一个排序好的数组转换为一颗二叉 ...

  4. java.net.URI 简介 文档 API

    URI 简介 文档地址:http://tool.oschina.net/apidocs/apidoc?api=jdk-zh public final class java.net.URI extend ...

  5. ILMerge-GUI的使用

    去这里下载: 这里下载ILMerge,http://www.microsoft.com/en-us/download/details.aspx?id=17630 这里下载ILMerge-GUI,htt ...

  6. javascript简单性能问题及学习笔记

    最近在看一本书:<高性能javaScript>,发现自己平时写js存在很多小细节上的问题,虽然这些问题不会导致程序运行出错,但是会导致界面加载变慢,用户体验变差,那么我们就来细细数一下应该 ...

  7. 创建spring boot项目启动报错遇到的问题

    1.Spring boot,Mybatis 启动报错 Failed to auto-configure a DataSource *************************** APPLICA ...

  8. 即时通讯之smack客户端配置

    之前学习了通过Openfire+spark+smack的模式来完成我们的即时通讯软件,上次我们已经完成了Openfire的安装和配置,这次我们继续完成我们的客户端部分. 1.首先我们通过百度smack ...

  9. scala多线程

    object Test { def main(args: Array[String]) { //创建线程池 val threadPool:ExecutorService=Executors.newFi ...

  10. 以Settings.APPLICATION_DEVELOPMENT_SETTINGS打开开发人员面板出错总结

    近期遇到了一个问题,感觉须要记录一下. 要打开开发人员面板,之前的代码例如以下: Intent intent = new Intent(Settings.ACTION_APPLICATION_DEVE ...