11 Facts about Data Science that you must know

Statistics, Machine Learning, Data Science, or Analytics – whatever you call it, this discipline is on rise in last quarter of century primarily owing to increasing data collection abilities and exponential increase in computational power. Field is drawing from pool of engineers, mathematicians, computer scientists, and statisticians, and increasingly, is demanding multi-faceted approach for successful execution. In fact, no branch of engineering, science, or business is far from touch of analytics in any industry. Perhaps you, too, are interested in being, or already are, a data scientist.

However, as one journeys through his/her career in analytics, some truths start becoming evident over time. And while none of them are ground-shattering, they often surprise novices in the field. So, it’s worthwhile to know 11 absolute facts of data science.

1. Data is never clean

Analytics without real data is mere collection of hypotheses and theories. Data helps test them and find the right one suitable in context of end-use in hand. However, in real world data is never clean. Even in organizations which have well established data science centers for decades, data isn’t clean. Apart from missing or wrong values, one of the biggest problems refers to joining multiple datasets into coherent whole. Join key may not be consistent or granularity or format may not be suitable. And it’s not intentional. Data storage enterprises are designed and tightly integrated with front-end software and user who is generating data, and are often independently created. Data scientist enters the scene quite late, and often is just “taker” of data as-in and not part of design.

2. You will spend most of your time cleaning and preparing data

Corollary to above is that large part of your time will be spent in just cleaning and processing data for model consumption. This usually annoys people new to industries. With brilliant mind bursting with sophisticated machine learning methods, spending three-fourth of the time with just data wrangling seems waste of talent and time. Often this leads to dissatisfaction and lack of attention – errors from which can come to bite even the most fanciest of the algorithms. If you cannot do this with equanimity and focus on big picture, then perhaps you should aim for research in statistics rather than career in data science.

3. There is no full automated data science. You need to get your hands dirty

Since data is not clean and requires quite a lot of data processing, there is no ready set of scripts or buttons to push to develop analytic model. Each data and problem is different. There is no substitute for exploring data, testing models, and validating against business sense and domain experts. Depending on problem and your prior experience, you may dirty your hands less, but dirty you will. Only exception is if you get data in specific format and do the same thing over and over, but that already sounds boring, isn’t it?!

4. 95% of the tasks do not require deep learning

95% is obviously a made up number – but the idea is that most real life problems don’t require advance analytic capabilities. Solving real-world problems involves lot more understanding real-world, problem domain, decision makers and end-users, than understanding latest and greatest discovery in statistics. What moves the needle, and moves it quick, is much more valuable than what is rigorous and pure. Often, simplest models like linear regression, logistic regression, and k-Means clustering work wonders as long as problem is well formulated. Even for complex problems, simple models can provide large gains which complex models can only improve marginally. That is not to say that complicated models have no place. In fact, depending on money riding, 0.1% increase in prediction accuracy may be worth millions of dollars.

5. Big Data is just a tool

With the hype around Big Data getting louder every day, I won’t blame you for being enamored of the idea. However, key thing to remember that Big Data is just collection of tools to work with large volume of data in reasonable time and with commodity grade computer hardware. Underlying analytic problem design, modeling best practices, and scrutinizing eyes of astute analyst aren’t replaceable with Big Data. That is not to say that competency in Big Data techniques isn’t handy – it is, more so since world is moving towards Big Data and there may not “Small” Data in couple of years anymore. But tools will come and go; your machine learning experience will only persist. Big data is like analogous to AK47 rifle forpoliceman rather than flintlock carbine rifle. Sure, better tool is preferable to inferior, but being trained in policing is more important than rifle.

6. You should embrace the Bayesian approach

Data science is sequence of hypotheses testing. You have to have going-in belief which you want to prove right or wrong based on observation from data. Stronger is your going-in belief, more counter-evidence you need to prove belief wrong. That, in essence, is Bayesian approach. But while proving your hypothesis right through data is important, proving alternative hypothesis wrong is also equally important. Take this fun puzzle from New York Times to figure out how to think Bayesian.

Alternative to Bayesian thinking is to let your data tell you stories. This can be problematic because sliced and diced some way, data will always tell a story. But without a-priori belief, story may not be true in reality. This is often case of hindsight bias and poor research (and often staple of motivational and self-help books). If you want to find differences in two groups (successful business versus non-successful, athletes versus slobs, rich versus poor), you can always find some. There are hundreds of thousands of human characteristics that some will come out different just by chance. That doesn’t mean that those characteristics made someone different from others. On the other hand, if you have reasonable hypothesis about what could be causing difference, you can verify if you are right or not. In the end, either you explain results from model based on your understanding, or you modify your understandings. There is no point saying that length of nose-hair is predictive of income of person in year fifty because model says so.

7. No one cares how you did it

Consumers of data science models are decision makers and executives, and they want workable and useful model. While it’s tempting for data scientists to explain technical expertise behind the model and show-off the analytic rigor, this is often counter-productive. Your audience cares about outcome and end-use and isn’t bothered about the decision engine you have put together. In fact, complicated explanations about mathematics of model are sure way to bore your users and intimidate against use. Save your expertise with technical discussions among your data science peers.

8. Academia and business are two different worlds

This applies to almost all disciplines and analytics is no exception. Focus in academics is on discovering new methods and proving new theorems. Focus in business is on solving a problem and making money. Doesn’t matter if analytics behind the solution is fancy or not, and no one cares about that anyway. Speed is often of more essence than accuracy. Every business analytic solution should solve a real-life problem and directly or indirectly should contribute to bottom line.

9. Presentation is key

Since end-user and decision maker is often non-mathematical person, selling an analytic solution isn’t different from other sells. You can sell on quality – analytic accuracy – but you can also sell on emotions, aesthetics, story, human angle, and money. Being able to explain your method in simple terms and align with end-users’ interest is art that all data scientists who wants to make significant non-theoretical mark on world must master. At least for a while, that means, story-telling through PowerPoint should remain key weapon in your arsenal.

10. All models are wrong, but some are useful

Models, by definition, model some ‘truth’ in the world. Since world is infinitely complex (think Quantum Mechanics!), models are approximations of reality. Some models are more wrong than others, but all are wrong. However, they can be, and often are, useful since they are better than alternative of no model and no prediction. Realizing what we are aiming for and what we are competing against can be important in shaping our analytic design process – and checking our egos.

11. Just because analytic model is great doesn't mean it will see light of day

As fun as data science is, there is more to the world than your analytical model. If you see about a third or more of your work getting implemented or used then consider yourself lucky. Notwithstanding analytic capabilities, analytic project get shelved for various reasons all the time, including, data changed, problem changed, no one interested in solution, implementation too expensive, benefit not worth the cost, someone else did it first, and solution too advanced for its time. Be calm and carry on.

I realize that perhaps there are more than 11. And perhaps some of these could be clubbed together. Point is not about counter, but about importance of internalizing these realities of industry we want to be part of. Difference companies and industries might be at different spectrum of these facts, but collectively knowing and understanding these ‘facts’ will make one a more satisfied, broad minded, and better data scientist.

(Did I miss any fundamental fact of world of data science? Share in comments below.)
Most facts are picked from Reddit.com

Other Articles by the same author

Curse Dimensionality

Semi-Supervised Clustering

Other Related Links that you may like

Overview of Text Mining

Role of Business Analyst

11 Facts about Data Science that you must know的更多相关文章

  1. 学习笔记之Data Science

    Data science - Wikipedia https://en.wikipedia.org/wiki/Data_science Data science, also known as data ...

  2. 15 Most Read Data Science Articles in 2015. So far …

    15 Most Read Data Science Articles in 2015. So far … We've compiled the latest set of "most rea ...

  3. 40 Questions to test your skill in Python for Data Science

    Comes from: https://www.analyticsvidhya.com/blog/2017/05/questions-python-for-data-science/ Python i ...

  4. 【转】The most comprehensive Data Science learning plan for 2017

    I joined Analytics Vidhya as an intern last summer. I had no clue what was in store for me. I had be ...

  5. Data Science: An overview

    Week 1 Data Science: An overview Objective: 1.Is data science the same as statistics or analysis? st ...

  6. 七个用于数据科学(data science)的命令行工具

    七个用于数据科学(data science)的命令行工具 数据科学是OSEMN(和 awesome 相同发音),它包括获取(Obtaining).整理(Scrubbing).探索(Exploring) ...

  7. 推荐几个来自 MOOCs的 Data Science

    数据科学是一个大领域,如果你想成为一个优秀的数据专家,自学是必要的技能. MOOCs是数据科学的主要来源.有许多网站提供了 MOOCs,比如Coursera.Coursera和Udacity都还不错. ...

  8. 学习Data Science/Deep Learning的一些材料

    原文发布于我的微信公众号: GeekArtT. 从CFA到如今的Data Science/Deep Learning的学习已经有一年的时间了.期间经历了自我的兴趣.擅长事务的探索和试验,有放弃了的项目 ...

  9. Data Science at the Command Line学习笔记(一)

    学习Data Science at the Command Line时,win7下安装环境是遇到了一些小问题,最后通过百度解决. 官方指导可以在这个地址找到:http://datascienceatt ...

随机推荐

  1. DPDK flow_classify 源码阅读

    代码部分 /* SPDX-License-Identifier: BSD-3-Clause * Copyright(c) 2017 Intel Corporation */ #include < ...

  2. WebGL学习笔记(二)

    目录 绘制多个顶点 使用缓冲区对象 类型化数组 使用drawArrays()函数绘制图形 图形的移动 图形的旋转 图形的缩放 绘制多个顶点 使用缓冲区对象 创建缓冲区对象 var vertexBuff ...

  3. 16_常用API_第16天(正则表达式、Date、DateFormat、Calendar)_讲义

    今日内容介绍 1.正则表达式的定义及使用 2.Date类的用法 3.Calendar类的用法 ==========================================第一阶段======= ...

  4. Linux网卡配置文件路径是什么?要使服务器上外网,必须满足的条件有哪些?需要配置什么?

    Linux网卡配置文件路径是什么?要使服务器上外网,必须满足的条件有哪些?需要配置什么?    答:    网卡配置文件路径:/etc/sysconfig/network-scripts/ifcfg- ...

  5. 蜗牛慢慢爬 LeetCode 10. Regular Expression Matching [Difficulty: Hard]

    题目 Implement regular expression matching with support for '.' and '*'. '.' Matches any single charac ...

  6. beta——5

    一.提供当天站立式会议照片一张: 二. 每个人的工作 (有work item 的ID) (1) 昨天已完成的工作: 对用户功能的添加. (2) 今天计划完成的工作: web发布 (3) 工作中遇到的困 ...

  7. js中__proto__和prototype的区别和关系? 这样好理解多了

    原型的概念 真正理解什么是原型是学习原型理论的关键.很多人在此产生了混淆,没有真正理解,自然后续疑惑更多. 首先,我们明确原型是一个对象,其次,最重要的是, Every function has a ...

  8. js异步上传图片

    <!DOCTYPE html><html xmlns = "http://www.w3.org/1999/xhtml" ><head><m ...

  9. Dcoker中启动mysql,并实现root远程访问

    mysql容器的运行 下载mysql 5.7.19的镜像 docker pull mysql:5.7.19 运行mysql容器,端口映射为 10036 docker run --name mysql5 ...

  10. 【移动端debug-4】iOS下setTimeout无法触发focus事件的解决方案

    开篇总结:其实目前无法解决这个bug. 这两天做项目遇到了这个case,项目需求是打开页面的时候,input元素自动弹起键盘.由于各种方面的考虑,我们希望通过setTimeout延时200毫秒让inp ...