51 Free Data Science Books
51 Free Data Science Books

A great collection of free data science books covering a wide range of topics from Data Science, Business Analytics, Data Mining and Big Data to Machine Learning, Algorithms and Data Science Tools.
Data Science Overviews
- An Introduction to Data Science (Jeffrey Stanton, 2013)
- School of Data Handbook (2015)
- Data Jujitsu: The Art of Turning Data into Product (DJ Patil, 2012)
- Art of Data Science (Roger D. Peng & Elizabeth Matsui, 2015)
Data Scientists Interviews
- The Data Science Handbook (Carl Shan, Henry Wang, William Chen, & Max Song, 2015)
- The Data Analytics Handbook (Brian Liou, Tristan Tao, & Declan Shener, 2015)
How To Build Data Science Teams
- Data Driven: Creating a Data Culture (Hilary Mason & DJ Patil, 2015)
- Building Data Science Teams (DJ Patil, 2011)
- Understanding the Chief Data O€fficer (Julie Steele, 2015)
Data Analysis
- The Elements of Data Analytic Style (Jeff Leek, 2015)
Distributed Computing Tools
- Hadoop: The Definitive Guide (Tom White, 2011)
- Data-Intensive Text Processing with MapReduce (Jimmy Lin & Chris Dyer, 2010)
Data Mining and Machine Learning
- Introduction to Machine Learning (Amnon Shashua, 2008)
- Machine Learning (Abdelhamid Mellouk & Abdennacer Chebira)
- Machine Learning – The Complete Guide (Wikipedia)
- Social Media Mining An Introduction (Reza Zafarani, Mohammad Ali Abbasi, & Huan Liu, 2014)
- Data Mining: Practical Machine Learning Tools and Techniques (Ian H. Witten & Eibe Frank, 2005)
- Mining of Massive Datasets (Jure Leskovec, Anand Rajaraman, & Jeff Ullman, 2014)
- A Programmer’s Guide to Data Mining (Ron Zacharski, 2015)
- Data Mining with Rattle and R (Graham Williams, 2011)
- Data Mining and Analysis: Fundamental Concepts and Algorithms (Mohammed J. Zaki & Wagner Meria Jr., 2014)
- Mining the Social Web: Data Mining Facebook, Twitter, LinkedIn, Google+, GitHub, and More (Matthew A. Russell, 2014)
- Probabilistic Programming & Bayesian Methods for Hackers (Cam Davidson-Pilon, 2015)
- Data Mining Techniques For Marketing, Sales, and Customer Relationship Management (Michael J.A. Berry & Gordon S. Linoff, 2004)
- Inductive Logic Programming: Techniques and Applications (Nada Lavrac & Saso Dzeroski, 1994)
- Pattern Recognition and Machine Learning (Christopher M. Bishop, 2006)
- Machine Learning, Neural and Statistical Classification (D. Michie, D.J. Spiegelhalter, & C.C. Taylor, 1999)
- Information Theory, Inference, and Learning Algorithms (David J.C. MacKay, 2005)
- Data Mining and Business Analytics with R (Johannes Ledolter, 2013)
- Bayesian Reasoning and Machine Learning (David Barber, 2014)
- Gaussian Processes for Machine Learning (C. E. Rasmussen & C. K. I. Williams, 2006)
- Reinforcement Learning: An Introduction (Richard S. Sutton & Andrew G. Barto, 2012)
- Algorithms for Reinforcement Learning (Csaba Szepesvari, 2009)
- Big Data, Data Mining, and Machine Learning (Jared Dean, 2014)
- Modeling With Data (Ben Klemens, 2008)
- KB – Neural Data Mining with Python Sources (Roberto Bello, 2013)
- Deep Learning (Yoshua Bengio, Ian J. Goodfellow, & Aaron Courville, 2015)
- Neural Networks and Deep Learning (Michael Nielsen, 2015)
- Data Mining Algorithms In R (Wikibooks, 2014)
- Data Mining and Analysis: Fundamental Concepts and Algorithms (Mohammed J. Zaki & Wagner Meira Jr., 2014)
- Theory and Applications for Advanced Text Mining (Shigeaki Sakurai, 2012)
Statistics and Statistical Learning
- Think Stats: Exploratory Data Analysis in Python (Allen B. Downey, 2014)
- Think Bayes: Bayesian Statistics Made Simple (Allen B. Downey, 2012)
- The Elements of Statistical Learning: Data Mining, Inference, and Prediction (Trevor Hastie, Robert Tibshirani, & Jerome Friedman, 2008)
- An Introduction to Statistical Learning with Applications in R (Gareth James, Daniela Witten, Trevor Hastie, & Robert Tibshirani, 2013)
- A First Course in Design and Analysis of Experiments (Gary W. Oehlert, 2010)
Data Visualization
- D3 Tips and Tricks (Malcolm Maclean, 2015)
- Interactive Data Visualization for the Web (Scott Murray, 2013)
Big Data
- Disruptive Possibilities: How Big Data Changes Everything (Jeffrey Needham, 2013)
- Real-Time Big Data Analytics: Emerging Architecture (Mike Barlow, 2013)
- Big Data Now: 2012 Edition (O’Reilly Media, Inc., 2012)
51 Free Data Science Books的更多相关文章
- Awesome (and Free) Data Science Books[转]
Post Date: September 3, 2014By: Stephanie Miller Marty Rose, Data Scientist in the Acxiom Product an ...
- 【Repost】A Practical Intro to Data Science
Are you a interested in taking a course with us? Learn about our programs or contact us at hello@zip ...
- Competing in a data science contest without reading the data
Competing in a data science contest without reading the data Machine learning competitions have beco ...
- Comprehensive learning path – Data Science in Python深入学习路径-使用python数据中学习
http://blog.csdn.net/pipisorry/article/details/44245575 关于怎么学习python,并将python用于数据科学.数据分析.机器学习中的一篇非常好 ...
- R8:Learning paths for Data Science[continuous updating…]
Comprehensive learning path – Data Science in Python Journey from a Python noob to a Kaggler on Pyth ...
- 15 Most Read Data Science Articles in 2015. So far …
15 Most Read Data Science Articles in 2015. So far … We've compiled the latest set of "most rea ...
- 11 Facts about Data Science that you must know
11 Facts about Data Science that you must know Statistics, Machine Learning, Data Science, or Analyt ...
- 40 Questions to test your skill in Python for Data Science
Comes from: https://www.analyticsvidhya.com/blog/2017/05/questions-python-for-data-science/ Python i ...
- 【转】The most comprehensive Data Science learning plan for 2017
I joined Analytics Vidhya as an intern last summer. I had no clue what was in store for me. I had be ...
随机推荐
- 【动态规划】POJ-3616
一.题目 Description Bessie is such a hard-working cow. In fact, she is so focused on maximizing her pro ...
- [并查集] 1118. Birds in Forest (25)
1118. Birds in Forest (25) Some scientists took pictures of thousands of birds in a forest. Assume t ...
- golang build 的简单用法.(菜鸟初学)
1. golang 里面的 go build 可以编译代码. go build helloworld.go 2. 这里面有一个注意事项事项. 如果引用非go语言的 内置package的话 需要在环境变 ...
- Linux服务器学习(二)
昨天简单了解了linux的基础命令,今天学习linux搭建环境(安装文件,配置文件)及权限操作. 一.搭建lnmp环境 lnmp指Linux+Nginx+Mysql+PHP Ubuntu安装文件命令为 ...
- 小程序 上啦下拉刷新window配置
"enablePullDownRefresh": "true" /** * 页面相关事件处理函数--监听用户下拉动作 */ onPullDownRefres ...
- L2 L3 L4
第二层交换机,是根据第二层数据链路层的MAC地址和通过站表选择路由来完成端到端的数据交换的.因为站表的建立与维护是由交换机自动完成,而路由器又是属于第三层设备,其寻址过程是根据IP地址寻址和通过路由表 ...
- php三种方法从控制结构或脚本中跳出
PHP中,如果希望停止一段代码,根据需要达到的效果不同,可以有三种方法实现: 1. break: 如果在循环中使用了break语句,脚本就会从循环体后面的第一条语句开始执行: 2. continue: ...
- C++模式学习------单例模式
单例(Singleton)模式,是一种常用的软件设计模式.在应用这个模式时,单例对象的类必须保证只有一个实例存在.许多时候整个系统只需要拥有一个的全局对象,这样有利于我们协调系统整体的行为.例如一些类 ...
- JAXB java类与xml互转
JAXB(Java Architecture for XML Binding) 是一个业界的标准,是一项可以根据XML Schema产生Java类的技术.该过程中,JAXB也提供了将XML实例文档反向 ...
- winrar 授权破解过期解决
RAR registration data Federal Agency for Education 1000000 PC usage license UID=b621cca9a84bc5deffbf ...