51 Free Data Science Books
51 Free Data Science Books
A great collection of free data science books covering a wide range of topics from Data Science, Business Analytics, Data Mining and Big Data to Machine Learning, Algorithms and Data Science Tools.
Data Science Overviews
- An Introduction to Data Science (Jeffrey Stanton, 2013)
- School of Data Handbook (2015)
- Data Jujitsu: The Art of Turning Data into Product (DJ Patil, 2012)
- Art of Data Science (Roger D. Peng & Elizabeth Matsui, 2015)
Data Scientists Interviews
- The Data Science Handbook (Carl Shan, Henry Wang, William Chen, & Max Song, 2015)
- The Data Analytics Handbook (Brian Liou, Tristan Tao, & Declan Shener, 2015)
How To Build Data Science Teams
- Data Driven: Creating a Data Culture (Hilary Mason & DJ Patil, 2015)
- Building Data Science Teams (DJ Patil, 2011)
- Understanding the Chief Data O€fficer (Julie Steele, 2015)
Data Analysis
- The Elements of Data Analytic Style (Jeff Leek, 2015)
Distributed Computing Tools
- Hadoop: The Definitive Guide (Tom White, 2011)
- Data-Intensive Text Processing with MapReduce (Jimmy Lin & Chris Dyer, 2010)
Data Mining and Machine Learning
- Introduction to Machine Learning (Amnon Shashua, 2008)
- Machine Learning (Abdelhamid Mellouk & Abdennacer Chebira)
- Machine Learning – The Complete Guide (Wikipedia)
- Social Media Mining An Introduction (Reza Zafarani, Mohammad Ali Abbasi, & Huan Liu, 2014)
- Data Mining: Practical Machine Learning Tools and Techniques (Ian H. Witten & Eibe Frank, 2005)
- Mining of Massive Datasets (Jure Leskovec, Anand Rajaraman, & Jeff Ullman, 2014)
- A Programmer’s Guide to Data Mining (Ron Zacharski, 2015)
- Data Mining with Rattle and R (Graham Williams, 2011)
- Data Mining and Analysis: Fundamental Concepts and Algorithms (Mohammed J. Zaki & Wagner Meria Jr., 2014)
- Mining the Social Web: Data Mining Facebook, Twitter, LinkedIn, Google+, GitHub, and More (Matthew A. Russell, 2014)
- Probabilistic Programming & Bayesian Methods for Hackers (Cam Davidson-Pilon, 2015)
- Data Mining Techniques For Marketing, Sales, and Customer Relationship Management (Michael J.A. Berry & Gordon S. Linoff, 2004)
- Inductive Logic Programming: Techniques and Applications (Nada Lavrac & Saso Dzeroski, 1994)
- Pattern Recognition and Machine Learning (Christopher M. Bishop, 2006)
- Machine Learning, Neural and Statistical Classification (D. Michie, D.J. Spiegelhalter, & C.C. Taylor, 1999)
- Information Theory, Inference, and Learning Algorithms (David J.C. MacKay, 2005)
- Data Mining and Business Analytics with R (Johannes Ledolter, 2013)
- Bayesian Reasoning and Machine Learning (David Barber, 2014)
- Gaussian Processes for Machine Learning (C. E. Rasmussen & C. K. I. Williams, 2006)
- Reinforcement Learning: An Introduction (Richard S. Sutton & Andrew G. Barto, 2012)
- Algorithms for Reinforcement Learning (Csaba Szepesvari, 2009)
- Big Data, Data Mining, and Machine Learning (Jared Dean, 2014)
- Modeling With Data (Ben Klemens, 2008)
- KB – Neural Data Mining with Python Sources (Roberto Bello, 2013)
- Deep Learning (Yoshua Bengio, Ian J. Goodfellow, & Aaron Courville, 2015)
- Neural Networks and Deep Learning (Michael Nielsen, 2015)
- Data Mining Algorithms In R (Wikibooks, 2014)
- Data Mining and Analysis: Fundamental Concepts and Algorithms (Mohammed J. Zaki & Wagner Meira Jr., 2014)
- Theory and Applications for Advanced Text Mining (Shigeaki Sakurai, 2012)
Statistics and Statistical Learning
- Think Stats: Exploratory Data Analysis in Python (Allen B. Downey, 2014)
- Think Bayes: Bayesian Statistics Made Simple (Allen B. Downey, 2012)
- The Elements of Statistical Learning: Data Mining, Inference, and Prediction (Trevor Hastie, Robert Tibshirani, & Jerome Friedman, 2008)
- An Introduction to Statistical Learning with Applications in R (Gareth James, Daniela Witten, Trevor Hastie, & Robert Tibshirani, 2013)
- A First Course in Design and Analysis of Experiments (Gary W. Oehlert, 2010)
Data Visualization
- D3 Tips and Tricks (Malcolm Maclean, 2015)
- Interactive Data Visualization for the Web (Scott Murray, 2013)
Big Data
- Disruptive Possibilities: How Big Data Changes Everything (Jeffrey Needham, 2013)
- Real-Time Big Data Analytics: Emerging Architecture (Mike Barlow, 2013)
- Big Data Now: 2012 Edition (O’Reilly Media, Inc., 2012)
51 Free Data Science Books的更多相关文章
- Awesome (and Free) Data Science Books[转]
Post Date: September 3, 2014By: Stephanie Miller Marty Rose, Data Scientist in the Acxiom Product an ...
- 【Repost】A Practical Intro to Data Science
Are you a interested in taking a course with us? Learn about our programs or contact us at hello@zip ...
- Competing in a data science contest without reading the data
Competing in a data science contest without reading the data Machine learning competitions have beco ...
- Comprehensive learning path – Data Science in Python深入学习路径-使用python数据中学习
http://blog.csdn.net/pipisorry/article/details/44245575 关于怎么学习python,并将python用于数据科学.数据分析.机器学习中的一篇非常好 ...
- R8:Learning paths for Data Science[continuous updating…]
Comprehensive learning path – Data Science in Python Journey from a Python noob to a Kaggler on Pyth ...
- 15 Most Read Data Science Articles in 2015. So far …
15 Most Read Data Science Articles in 2015. So far … We've compiled the latest set of "most rea ...
- 11 Facts about Data Science that you must know
11 Facts about Data Science that you must know Statistics, Machine Learning, Data Science, or Analyt ...
- 40 Questions to test your skill in Python for Data Science
Comes from: https://www.analyticsvidhya.com/blog/2017/05/questions-python-for-data-science/ Python i ...
- 【转】The most comprehensive Data Science learning plan for 2017
I joined Analytics Vidhya as an intern last summer. I had no clue what was in store for me. I had be ...
随机推荐
- HttpContext.Current.Server.MapPath("/") 未将对象设置到对象的实例异常。
多线程中的System.Web.HttpContext.Current.Server.MapPath("/") 多线程中Server.MapPath会失效... 网上找到几种解决方 ...
- C++操作mysql方法总结(1)
C++通过mysql的c api和通过mysql的Connector C++ 1.1.3操作mysql的两种方式 使用vs2013和64位的msql 5.6.16进行操作 项目中使用的数据库名为boo ...
- windows多线程(三) 原子操作
一.分析上一篇程序的现象 我们先从上一篇文章中的最后一个程序开始分析. #include <stdio.h> #include <windows.h> const unsign ...
- 【设计模式】—— 原型模式Prototype
前言:[模式总览]——————————by xingoo 模式意图 由于有些时候,需要在运行时指定对象时哪个类的实例,此时用工厂模式就有些力不从心了.通过原型模式就可以通过拷贝函数clone一个原有的 ...
- Hibernate性能优化之SessionFactory重用
Hibernate优化的方式有很多,如缓存.延迟加载以及与SQL合理映射,通过对SessionFactory使用的优化是最基础的. SessionFactory负责创建Session实例,Sessio ...
- Yarn源码分析1(Hadoop2.7.2)
在Hadoop中,调度框架YARN(Yet Another Resource Negotiater)是基于事件的,调度的是MapReduce的Application.Application有一系列的状 ...
- BZOJ5102 POI2018Prawnicy(堆)
考虑固定右端点,使左端点最小.那么按右端点排序后查询前缀这些区间的左端点第k小即可.然而写了一个treap一个线段树都T飞了,感觉惨爆.事实上可以用堆求第k小,维护一个大根堆保证堆中元素不超过k个即可 ...
- 【转】关于在vim中的查找和替换
1,查找 在normal模式下按下/即可进入查找模式,输入要查找的字符串并按下回车. Vim会跳转到第一个匹配.按下n查找下一个,按下N查找上一个. Vim查找支持正则表达式,例如/vim$匹配行尾的 ...
- 【IOI 2018】Doll 机械娃娃
我感觉这个题作为Day2T1,有一定的挑战性.为$Rxd$没有完成这道题可惜. 我觉得这道题,如果按照前几个部分分的思路来想,就有可能绕进错误的思路中.因为比如说每个传感器最多只在序列中出现$2$次, ...
- Windows + Ubuntu下JDK与adb/android环境变量配置完整教程
假设JDK和android sdk路径分别如下: D:\Program Files\Java\jdkD:\android-sdk 1.JDK环境变量配置JAVA_HOME=D:\Program Fil ...