Desert King
Time Limit: 3000MS   Memory Limit: 65536K
     

Description

David the Great has just become the king of a desert country. To win the respect of his people, he decided to build channels all over his country to bring water to every village. Villages which are connected to his capital village will be watered. As the dominate ruler and the symbol of wisdom in the country, he needs to build the channels in a most elegant way.

After days of study, he finally figured his plan out. He wanted the average cost of each mile of the channels to be minimized. In other words, the ratio of the overall cost of the channels to the total length must be minimized. He just needs to build the necessary channels to bring water to all the villages, which means there will be only one way to connect each village to the capital.

His engineers surveyed the country and recorded the position and altitude of each village. All the channels must go straight between two villages and be built horizontally. Since every two villages are at different altitudes, they concluded that each channel between two villages needed a vertical water lifter, which can lift water up or let water flow down. The length of the channel is the horizontal distance between the two villages. The cost of the channel is the height of the lifter. You should notice that each village is at a different altitude, and different channels can't share a lifter. Channels can intersect safely and no three villages are on the same line.

As King David's prime scientist and programmer, you are asked to find out the best solution to build the channels.

Input

There are several test cases. Each test case starts with a line containing a number N (2 <= N <= 1000), which is the number of villages. Each of the following N lines contains three integers, x, y and z (0 <= x, y < 10000, 0 <= z < 10000000). (x, y) is the position of the village and z is the altitude. The first village is the capital. A test case with N = 0 ends the input, and should not be processed.

Output

For each test case, output one line containing a decimal number, which is the minimum ratio of overall cost of the channels to the total length. This number should be rounded three digits after the decimal point.

Sample Input

4
0 0 0
0 1 1
1 1 2
1 0 3
0

Sample Output

1.000

Source

 
题目大意:构建最优比率生成树
每条边的花费=连接两点的高度差,距离=平面两点间距离(官方名称:欧几里得距离)
最小化 ∑ 每条边的花费/距离
01分数规划+prim
prim构造最小生成树的标准是 w=这条边的花费-这条边的距离*二分的mid
最后判断选用边的w是否大于0
01分数规划就用在这里
然而初学,并没有想到,一直在思考怎么在prim过程中套01规划
再就是判断式子>0,移动下界,否则移动上界
这是固定的,与最终求最大最小值没有关系
受了刚做的一道01规划题影响http://www.cnblogs.com/TheRoadToTheGold/p/6546981.html
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cmath>
#define eps 1e-6
using namespace std;
int n;
double l,r,mid,ans,p;
double x[],y[],h[],dis[][],cost[][],minn[],w[][];
bool v[];
bool check(double k)
{
p=;
memset(v,,sizeof(v));
for(int i=;i<=n;i++) minn[i]=w[][i];
minn[]=;v[]=true;
int s=n-;
while(s--)
{
int point;double d=;
for(int i=;i<=n;i++)
if(!v[i]&&minn[i]<d)
{
point=i;d=minn[i];
}
p+=d;v[point]=true;
for(int i=;i<=n;i++)
if(!v[i]&&w[point][i]<minn[i])
minn[i]=w[point][i];
}
return p>=;
}
int main()
{
while(scanf("%d",&n)!=EOF)
{
if(!n) return ;
for(int i=;i<=n;i++) scanf("%lf%lf%lf",&x[i],&y[i],&h[i]);
for(int i=;i<n;i++)
for(int j=i+;j<=n;j++)
{
dis[i][j]=sqrt(pow(abs(x[i]-x[j]),)+pow(abs(y[i]-y[j]),));
cost[i][j]=abs(h[i]-h[j]);
}
l=,r=;ans=;
while(fabs(l-r)>eps)
{
mid=(l+r)/;
for(int i=;i<n;i++)
for(int j=i+;j<=n;j++)
w[i][j]=w[j][i]=cost[i][j]-mid*dis[i][j];
if(check(mid))
{
ans=mid;
l=mid+eps;
}
else r=mid-eps;
}
printf("%.3lf\n",ans);
} }

poj 2728 Desert King (最优比率生成树)的更多相关文章

  1. POJ 2728 Desert King 最优比率生成树

    Desert King Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 20978   Accepted: 5898 [Des ...

  2. POJ.2728.Desert King(最优比率生成树 Prim 01分数规划 二分/Dinkelbach迭代)

    题目链接 \(Description\) 将n个村庄连成一棵树,村之间的距离为两村的欧几里得距离,村之间的花费为海拔z的差,求花费和与长度和的最小比值 \(Solution\) 二分,假设mid为可行 ...

  3. POJ 2728 Desert King(最优比率生成树, 01分数规划)

    题意: 给定n个村子的坐标(x,y)和高度z, 求出修n-1条路连通所有村子, 并且让 修路花费/修路长度 最少的值 两个村子修一条路, 修路花费 = abs(高度差), 修路长度 = 欧氏距离 分析 ...

  4. POJ 2728 Desert King (最优比率树)

    题意:有n个村庄,村庄在不同坐标和海拔,现在要对所有村庄供水,只要两个村庄之间有一条路即可,建造水管距离为坐标之间的欧几里德距离,费用为海拔之差,现在要求方案使得费用与距离的比值最小,很显然,这个题目 ...

  5. POJ 2728 Desert King (最优比例生成树)

    POJ2728 无向图中对每条边i 有两个权值wi 和vi 求一个生成树使得 (w1+w2+...wn-1)/(v1+v2+...+vn-1)最小. 采用二分答案mid的思想. 将边的权值改为 wi- ...

  6. POJ2728 Desert King —— 最优比率生成树 二分法

    题目链接:http://poj.org/problem?id=2728 Desert King Time Limit: 3000MS   Memory Limit: 65536K Total Subm ...

  7. Desert King(最优比率生成树)

    Desert King Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 22717   Accepted: 6374 Desc ...

  8. 【POJ2728】Desert King 最优比率生成树

    题目大意:给定一个 N 个点的无向完全图,边有两个不同性质的边权,求该无向图的一棵最优比例生成树,使得性质为 A 的边权和比性质为 B 的边权和最小. 题解:要求的答案可以看成是 0-1 分数规划问题 ...

  9. POJ2728 Desert King 最优比率生成树

    题目 http://poj.org/problem?id=2728 关键词:0/1分数规划,参数搜索,二分法,dinkelbach 参考资料:http://hi.baidu.com/zzningxp/ ...

随机推荐

  1. Internet History, Technology and Security (Week⑨)

    Week ⑨ We are now on the second to last week of the class and finishing up our look at Internet Secu ...

  2. diliucizuoye

    NABCD N(Need 需求) 互联网的高速发展,造就了二十一世纪这个追求高品质.高体验的信息时代,随其发展改变的是信息记录与分享方式,从传统的面对面交流.手机通话.写日记本,到现如今的社交平台.信 ...

  3. KEIL C51代码优化详细分析

    阅读了<单片机与嵌入式系统应用>2005年第10期杂志<经验交流>栏目的一篇文章<Keil C51对同一端口的连续读取方法>(原文)后,笔者认为该文并未就此问题进行 ...

  4. 基于windowsphone7的控制ppt播放

    最近突然想起了一个学长的一个利用手机控制ppt播放的一个创意,并想将其在windows phone7上实现一下. 经过几天的努力已经可以控制ppt的播放,暂停,上一张,下一张了,并且电脑会将当前ppt ...

  5. vue 中使用better-scroll 遇到的问题

    以下是遇到问题以及解决方法 1.使用v-for 循环循环出来的列表,不能滚动. 原因是没有给wrapper 父层 加高度,当子层的高度大于父层的高度,才能滚动 打印scroll 对象,显示如此 竟然相 ...

  6. 每个Android开发者必须知道的内存管理知识

    原文:每个Android开发者必须知道的内存管理知识 拷贝在此处,以备后续查看. 相信一步步走过来的Android从业者,每个人都会遇到OOM的情况.如何避免和防范OOM的出现,对于每一个程序员来说确 ...

  7. Java并发编程之线程生命周期、守护线程、优先级、关闭和join、sleep、yield、interrupt

    Java并发编程中,其中一个难点是对线程生命周期的理解,和多种线程控制方法.线程沟通方法的灵活运用.这些方法和概念之间彼此联系紧密,共同构成了Java并发编程基石之一. Java线程的生命周期 Jav ...

  8. html select options & vue h render

    html select options & vue h render https://developer.mozilla.org/en-US/docs/Web/HTML/Element/opt ...

  9. sqlserver中where条件加判断

    我想实现如下功能: where case when (@a = null) then 1 = 1 else @a=a and b=@b 但是这样报错,经过翻阅资料找到如下解决方案: where (1 ...

  10. 【Python】使用python操作mysql数据库

    这是我之前使用mysql时用到的一些库及开发的工具,这里记录下,也方便我查阅. python版本: 2.7.13 mysql版本: 5.5.36 几个python库 1.mysql-connector ...