ZT 二叉树先序,中序,后序遍历非递归实现
利用栈实现二叉树的先序,中序,后序遍历的非递归操作
- #include <stdio.h>
- #include <malloc.h>
- #include <stdlib.h>
- #include <queue>
- #include <stack>
- #include <iostream>
- using namespace std;
- typedef struct BiTNode{
- char data;
- BiTNode *lchild, *rchild;
- }BiTNode,*BiTree;
- void CreateBiTree(BiTree &T)//建树,按先序顺序输入节点
- {
- char ch;
- scanf("%c",&ch);
- if(ch==' ')
- {
- T=NULL;
- return;
- }
- else
- {
- T=(BiTree)malloc(sizeof(BiTNode));
- if(!T)
- exit(1);
- T->data=ch;
- CreateBiTree(T->lchild);
- CreateBiTree(T->rchild);
- }
- }
- void InOrderTraverse(BiTree T)//非递归中序遍历
- {
- stack<BiTree> Stack;
- if(!T)
- {
- printf("空树!\n");
- return;
- }
- while(T || !Stack.empty())
- {
- while(T)
- {
- Stack.push(T);
- T=T->lchild;
- }
- T=Stack.top();
- Stack.pop();
- printf("%c",T->data);
- T=T->rchild;
- }
- }
- void PreOrderTraverse(BiTree T)//非递归先序遍历
- {
- stack<BiTree> Stack;
- if(!T)
- {
- printf("空树!\n");
- return;
- }
- while(T || !Stack.empty())
- {
- while(T)
- {
- Stack.push(T);
- printf("%c",T->data);
- T=T->lchild;
- }
- T=Stack.top();
- Stack.pop();
- T=T->rchild;
- }
- }
- void PostOrderTraverse(BiTree T)//非递归后序遍历,用一个标记标记右子树是否访问过
- {
- int flag[20];
- stack<BiTree> Stack;
- if(!T)
- {
- printf("空树!\n");
- return;
- }
- while(T)
- {
- Stack.push(T);
- flag[Stack.size()]=0;
- T=T->lchild;
- }
- while(!Stack.empty())
- {
- T=Stack.top();
- while(T->rchild && flag[Stack.size()]==0)
- {
- flag[Stack.size()]=1;
- T=T->rchild;
- while(T)
- {
- Stack.push(T);
- flag[Stack.size()]=0;
- T=T->lchild;
- }
- }
- T=Stack.top();
- printf("%c",T->data);
- Stack.pop();
- }
- }
- void main()
- {
- BiTree T;
- CreateBiTree(T);
- PreOrderTraverse(T);
- printf("\n");
- InOrderTraverse(T);
- printf("\n");
- PostOrderTraverse(T);
- printf("\n");
- }

ZT 二叉树先序,中序,后序遍历非递归实现的更多相关文章
- 分别求二叉树前、中、后序的第k个节点
一.求二叉树的前序遍历中的第k个节点 //求先序遍历中的第k个节点的值 ; elemType preNode(BTNode *root,int k){ if(root==NULL) return ' ...
- 【算法】二叉树、N叉树先序、中序、后序、BFS、DFS遍历的递归和迭代实现记录(Java版)
本文总结了刷LeetCode过程中,有关树的遍历的相关代码实现,包括了二叉树.N叉树先序.中序.后序.BFS.DFS遍历的递归和迭代实现.这也是解决树的遍历问题的固定套路. 一.二叉树的先序.中序.后 ...
- 前、中、后序遍历随意两种是否能确定一个二叉树?理由? && 栈和队列的特点和区别
前序和后序不能确定二叉树理由:前序和后序在本质上都是将父节点与子结点进行分离,但并没有指明左子树和右子树的能力,因此得到这两个序列只能明确父子关系,而不能确定一个二叉树. 由二叉树的中序和前序遍历序列 ...
- DS Tree 已知先序、中序 => 建树 => 求后序
参考:二叉树--前序和中序得到后序 思路历程: 在最初敲的时候,经常会弄混preorder和midorder的元素位置.大体的思路就是在preorder中找到根节点(根节点在序列的左边),然后在mid ...
- TZOJ 3209 后序遍历(已知中序前序求后序)
描述 在数据结构中,遍历是二叉树最重要的操作之一.所谓遍历(Traversal)是指沿着某条搜索路线,依次对树中每个结点均做一次且仅做一次访问. 这里给出三种遍历算法. 1.中序遍历的递归算法定义: ...
- [Java]算术表达式求值之二(中序表达式转后序表达式方案,支持小数)
Inlet类,入口类,这个类的主要用途是验证用户输入的算术表达式: package com.hy; import java.io.BufferedReader; import java.io.IOEx ...
- [Java]算术表达式求值之一(中序表达式转后序表达式方案)
第二版请见:https://www.cnblogs.com/xiandedanteng/p/11451359.html 入口类,这个类的主要用途是粗筛用户输入的算术表达式: package com.h ...
- 已知树的前序、中序,求后序的java实现&已知树的后序、中序,求前序的java实现
public class Order { int findPosInInOrder(String str,String in,int position){ char c = str.charAt(po ...
- 二叉树前中后/层次遍历的递归与非递归形式(c++)
/* 二叉树前中后/层次遍历的递归与非递归形式 */ //*************** void preOrder1(BinaryTreeNode* pRoot) { if(pRoot==NULL) ...
随机推荐
- 快排,归并和Shell排序
快速排序 快速排序的执行流程: (1) 先从数列中取出一个数作为基准数. (2) 将比这个数大的数全放到它的右边,小于或等于它的数全放到它的左边. (3)再对左右区间重复第二步,直到各区间只有一个数. ...
- RabbitMQ.NET In Window Service
工作中要求使用RabbitMQ,以Windows Service 模式启动,中间有遇到一些问题,网上大部分博客有误导倾向, 在这里做一个简单的记录,以免后面的人走坑: 1. 自动重新连接,不需要手动处 ...
- Android Studio 3.0找不到Android Device Monitor
因为自Android Studio 3.0开始弃用Android Device Monitor,Android Developers官网上的原话是: Android Device Monitor is ...
- Android sdk manager 下载速度慢的问题
不多说了,直接附上方法: 首先打开Ecplise 中Android sdk manager,打开后, 在此窗口的上方打开偏好设置选项,然后在里面设置HTTP Proxy server和HTTP Pro ...
- 关于j使用ava匿名类的好处总结
匿名类,除了只能使用一次,其实还有其他用处,比如你想使用一个类的protected方法时,但是又和这个类不在同一个包下,这个时候匿名类就派上用场了,你可以定义一个匿名类继承这个类,在这个匿名类中定义一 ...
- 【canvas系列】用canvas实现一个colorpicker(类似PS的颜色选择器)
每个浏览器都有自己的特点,比如今天要做的colorpicker就是,一千个浏览器,一千个哈姆雷特,一千个colorpicker.今天canvas系列就用canvas做一个colorpicker. ** ...
- BitmapFactory.Options
BitmapFactory.Options bmpFactoryOptions = new BitmapFactory.Options(); bmpFactoryOptions.inSampleSiz ...
- Claims-based认证解析
Claims-based认证相关的两个重要的类ClaimsIdentity以及ClaimsPrincipal解析 ClaimsIdentity以及ClaimsPrincipal是.NET下Claims ...
- Centos 使用C++11 编译
今天编译代码,发现使用auto后无法编译,我的当前linux内核版本:(4.7之后即可支持C++11) 这时,在编译末尾加入 -std=c++11 就可以正常编译了.如:
- 读书笔记week1——涂涵越
这次读书笔记主要是就<程序员修炼之道>这本书的前半部分做一些总结以及发表一些自己的看法. 本书前面的一部分主要是一些程序员应该在工作中时刻注意的事情,一些关键的信息如下: 1.处理问题的态 ...