题意还是比较好懂。

给出若干个木棍的长度,问这些木棍构成三角形的可能性。

那么公式很容易知道

就是这些木棍组成三角形的所有情况个数 除以 从n个木棍中取3个木棍的情况数量C(n, 3) 即可

但是很显然分子不太好求。 因为木棍数据量是n^5

暂时没有办法,于是看到木棍的边长,数据量也是10^5,似乎预示着什么

那么我们可不可以这样:根据三角形的性质,两边之和大于第三边。我们就枚举每个木棍,假设该木棍是三角形中的最大边,然后看剩下的能构成三角形的两边的和有多少种情况。

这样一转换思路,就转到了求给出俩数组,然后从两个数组中各取出一个数,求相加的和各自有多少种。

由于数据量是10^5 ,所以我们可以把这两个数组中各个数的个数分别用数组num1, num2存起来。 然后刚才求相加的和有多少种就变成了求num1数组和num2之间的卷积了。

这就转变成了FFT了。 这样一来复杂度就降到了nlogn,到达了可以接受的范围

然后kuangbin巨巨的解释非常详细,我也是看了他的才懂点。http://www.cnblogs.com/kuangbin/archive/2013/07/24/3210565.html

然后就是代码了。 胡骏巨巨的模板果然厉害!!

#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstring>
#include <cmath>
#include <map>
#include <queue>
#include <set>
#include <vector>
using namespace std;
#define L(x) (1 << (x))
const double PI = acos(-1.0);
const int Maxn = 400001;
double ax[Maxn], ay[Maxn], bx[Maxn], by[Maxn];
long long num[Maxn];
int a[Maxn/4];
long long sum[Maxn];
int revv(int x, int bits)
{
int ret = 0;
for (int i = 0; i < bits; i++)
{
ret <<= 1;
ret |= x & 1;
x >>= 1;
}
return ret;
}
void fft(double * a, double * b, int n, bool rev)
{
int bits = 0;
while (1 << bits < n) ++bits;
for (int i = 0; i < n; i++)
{
int j = revv(i, bits);
if (i < j)
swap(a[i], a[j]), swap(b[i], b[j]);
}
for (int len = 2; len <= n; len <<= 1)
{
int half = len >> 1;
double wmx = cos(2 * PI / len), wmy = sin(2 * PI / len);
if (rev) wmy = -wmy;
for (int i = 0; i < n; i += len)
{
double wx = 1, wy = 0;
for (int j = 0; j < half; j++)
{
double cx = a[i + j], cy = b[i + j];
double dx = a[i + j + half], dy = b[i + j + half];
double ex = dx * wx - dy * wy, ey = dx * wy + dy * wx;
a[i + j] = cx + ex, b[i + j] = cy + ey;
a[i + j + half] = cx - ex, b[i + j + half] = cy - ey;
double wnx = wx * wmx - wy * wmy, wny = wx * wmy + wy * wmx;
wx = wnx, wy = wny;
}
}
}
if (rev)
{
for (int i = 0; i < n; i++)
a[i] /= n, b[i] /= n;
}
} int solve(long long a[], int na, long long ans[])
{
int len = na, ln;
for(ln = 0; L(ln) < na; ++ln);
len=L(++ln);
for(int i = 0; i < len; ++i)
{
if (i >= na) ax[i] = 0, ay[i] = 0;
else ax[i] = a[i], ay[i] = 0;
}
fft(ax, ay, len, 0);
for(int i=0; i<len; ++i)
{
double cx = ax[i] * ax[i] - ay[i] * ay[i];
double cy = 2 * ax[i] * ay[i];
ax[i] = cx, ay[i] = cy;
}
fft(ax, ay, len, 1); for(int i=0; i<len; ++i)
ans[i] = ax[i] + 0.5;
return len;
} int main()
{
int T;
int n;
scanf("%d",&T);
while(T--)
{
scanf("%d",&n);
memset(num, 0, sizeof(num));
for(int i = 0;i < n;i++)
{
scanf("%d", &a[i]);
num[a[i]]++;
}
sort(a, a + n);
int len1 = a[n - 1] + 1;
solve(num, len1, num);
int len = 2 * a[n - 1];
for(int i = 0;i < n;i++) //减掉取两个相同的组合
num[a[i] + a[i]]--; for(int i = 1;i <= len;i++) //选择的无序,除以2
num[i] /= 2;
sum[0] = 0;
for(int i = 1;i <= len;i++)
sum[i] = sum[i - 1] + num[i];
long long cnt = 0;
for(int i = 0;i < n; i++)
{
cnt += sum[len] - sum[a[i]];
cnt -= (long long)(n - 1 - i) * i;//减掉一个取大,一个取小的
cnt -= (n - 1); //减掉一个取本身,另外一个取其它
cnt -= (long long)(n - 1 - i)*(n - i - 2) / 2; //减掉大于它的取两个的组合
}
//总数
long long tot = (long long)n * (n - 1) * (n - 2) / 6;
printf("%.7lf\n",(double)cnt / tot);
}
return 0;
}

DU 4609 3-idiots FFT的更多相关文章

  1. bzoj 3513: [MUTC2013]idiots FFT

    bzoj 3513: [MUTC2013]idiots FFT 链接 bzoj 思路 参考了学姐TRTTG的题解 统计合法方案,最后除以总方案. 合法方案要不好统计,统计不合法方案. \(a+b< ...

  2. HDU 4609 3-idiots(FFT)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4609 题意:给出n个正整数(数组A).每次随机选出三个数.问这三个数能组成三角形的概率为多大? 思路: ...

  3. bzoj 3513 [MUTC2013]idiots FFT 生成函数

    [MUTC2013]idiots Time Limit: 20 Sec  Memory Limit: 128 MBSubmit: 806  Solved: 265[Submit][Status][Di ...

  4. HDU 4609 3-idiots (组合数学 + FFT)

    题意:给定 n 条边,问随机选出 3 条边,能组成三角形的概率是多少. 析:答案很明显就是  能组成三角形的种数 / (C(n, 3)).现在的问题是怎么求能组成三角形的种数. 这个博客说的非常清楚了 ...

  5. BZOJ3513[MUTC2013]idiots——FFT+生成函数

    题目描述 给定n个长度分别为a_i的木棒,问随机选择3个木棒能够拼成三角形的概率. 输入 第一行T(T<=100),表示数据组数. 接下来若干行描述T组数据,每组数据第一行是n,接下来一行有n个 ...

  6. [MUTC2013][bzoj3513] idiots [FFT]

    题面 传送门 思路 首先有一个容斥原理的结论:可以组成三角形的三元组数量=所有三元组-不能组成三角形的三元组 也就是说我们只要求出所有不能组成三角形的三元组即可 我们考虑三元组(a,b,c),a< ...

  7. 【bzoj3513】[MUTC2013]idiots FFT

    题目描述 给定n个长度分别为a_i的木棒,问随机选择3个木棒能够拼成三角形的概率. 输入 第一行T(T<=100),表示数据组数. 接下来若干行描述T组数据,每组数据第一行是n,接下来一行有n个 ...

  8. HDU 4609 3-idiots ——(FFT)

    这是我接触的第一个关于FFT的题目,留个模板. 这题的题解见:http://www.cnblogs.com/kuangbin/archive/2013/07/24/3210565.html. FFT的 ...

  9. hdu 4609: 3-idiots (FFT)

    题目链接 题意:从N个数中,选出三个两两不同的数,求这三个数能够作为一个三角形的三边长的概率. 题解:用一个数组num[]记录大小为 i 的数出现的次数,通过 num[] 卷 num[] 得到 num ...

随机推荐

  1. Maven 基础知识

    Maven MavenMaven 简介 Maven MavenMaven 是 Apache Apache Apache 软件基金会组织维护的 软件基金会组织维护的 软件基金会组织维护的 软件基金会组织 ...

  2. Java内存优化和性能优化的几点建议

    1.没有必要时请不用使用静态变量 使用Java的开发者都知道,当某个对象被定义为stataic变量所引用,这个对象所占有的内存将不会被回收.有时,开发者会将经常调用的对象或者变量定义为static,以 ...

  3. C语言基础 - read()函数读取文本字节导致判断失误的问题

    工作了几个月,闲着没事又拿起了经典的C程序设计看了起来,看到字符计数一节时想到用read()去读文本作为字符输入,一切OK,直到行计数时问题出现 了,字符总计数没有问题,可行计算就是进行不了,思考了半 ...

  4. RobotCraft 2017 第二届国际机器人学暑期学校 2nd Edition of International Robotics Summer School

    原文网址:http://www.ros.org/news/2017/02/2nd-edition-of-international-robotics-summer-school-robotcraft- ...

  5. qlserver排序规则在全角与半角处理中的应用

    --1.查询区分全角与半角字符--测试数据DECLARE @t TABLE(col varchar(10))INSERT @t SELECT 'aa'UNION ALL SELECT 'Aa'UNIO ...

  6. Linux 系统目录结构和常用指令

    一.系统目录结构 /bin 经常使用的命令 /etc 所有系统管理所需的配置文件和子目录 /home 用户主目录 /usr 应用程序目录 /usr/bin 系统用户使用的应用程序 /usr/sbin ...

  7. c语言快速排序算法(转)

    原文链接http://blog.csdn.net/morewindows/article/details/6684558 快速排序由于排序效率在同为O(N*logN)的几种排序方法中效率较高,因此经常 ...

  8. 【POJ】1819.Disks

    博客园的话插链接链接都是凉的= = 题解 我理解成能不能看到这个圆,除了最后几个圆特殊以外都是等价的,然而我凉了,因为我把圆当成线段来处理,但是,有可能一个圆完全被遮住了,还有一个缝隙,就WA了 计算 ...

  9. XUtils开源框架的使用(HttpUtils支持多线程断点续传)

    XUtils项目下载地址:https://github.com/wyouflf/xUtils XUtils中包含的四大模块: 1.DbUtils模块 2.ViewUtils模块 3.HttpUtils ...

  10. Gitlab Issue Tracker and Wiki(一)

    本节内容: 创建第一个问题 创建第一个合并请求 接受合并请求 工作里程碑 在提交中引用问题 创建维基百科页 使用Gollum管理维基百科 一. 创建问题 1. 登陆Gitlab服务器 2. 切换到想要 ...