DU 4609 3-idiots FFT
题意还是比较好懂。
给出若干个木棍的长度,问这些木棍构成三角形的可能性。
那么公式很容易知道
就是这些木棍组成三角形的所有情况个数 除以 从n个木棍中取3个木棍的情况数量C(n, 3) 即可
但是很显然分子不太好求。 因为木棍数据量是n^5
暂时没有办法,于是看到木棍的边长,数据量也是10^5,似乎预示着什么
那么我们可不可以这样:根据三角形的性质,两边之和大于第三边。我们就枚举每个木棍,假设该木棍是三角形中的最大边,然后看剩下的能构成三角形的两边的和有多少种情况。
这样一转换思路,就转到了求给出俩数组,然后从两个数组中各取出一个数,求相加的和各自有多少种。
由于数据量是10^5 ,所以我们可以把这两个数组中各个数的个数分别用数组num1, num2存起来。 然后刚才求相加的和有多少种就变成了求num1数组和num2之间的卷积了。
这就转变成了FFT了。 这样一来复杂度就降到了nlogn,到达了可以接受的范围
然后kuangbin巨巨的解释非常详细,我也是看了他的才懂点。http://www.cnblogs.com/kuangbin/archive/2013/07/24/3210565.html
然后就是代码了。 胡骏巨巨的模板果然厉害!!
#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstring>
#include <cmath>
#include <map>
#include <queue>
#include <set>
#include <vector>
using namespace std;
#define L(x) (1 << (x))
const double PI = acos(-1.0);
const int Maxn = 400001;
double ax[Maxn], ay[Maxn], bx[Maxn], by[Maxn];
long long num[Maxn];
int a[Maxn/4];
long long sum[Maxn];
int revv(int x, int bits)
{
int ret = 0;
for (int i = 0; i < bits; i++)
{
ret <<= 1;
ret |= x & 1;
x >>= 1;
}
return ret;
}
void fft(double * a, double * b, int n, bool rev)
{
int bits = 0;
while (1 << bits < n) ++bits;
for (int i = 0; i < n; i++)
{
int j = revv(i, bits);
if (i < j)
swap(a[i], a[j]), swap(b[i], b[j]);
}
for (int len = 2; len <= n; len <<= 1)
{
int half = len >> 1;
double wmx = cos(2 * PI / len), wmy = sin(2 * PI / len);
if (rev) wmy = -wmy;
for (int i = 0; i < n; i += len)
{
double wx = 1, wy = 0;
for (int j = 0; j < half; j++)
{
double cx = a[i + j], cy = b[i + j];
double dx = a[i + j + half], dy = b[i + j + half];
double ex = dx * wx - dy * wy, ey = dx * wy + dy * wx;
a[i + j] = cx + ex, b[i + j] = cy + ey;
a[i + j + half] = cx - ex, b[i + j + half] = cy - ey;
double wnx = wx * wmx - wy * wmy, wny = wx * wmy + wy * wmx;
wx = wnx, wy = wny;
}
}
}
if (rev)
{
for (int i = 0; i < n; i++)
a[i] /= n, b[i] /= n;
}
} int solve(long long a[], int na, long long ans[])
{
int len = na, ln;
for(ln = 0; L(ln) < na; ++ln);
len=L(++ln);
for(int i = 0; i < len; ++i)
{
if (i >= na) ax[i] = 0, ay[i] = 0;
else ax[i] = a[i], ay[i] = 0;
}
fft(ax, ay, len, 0);
for(int i=0; i<len; ++i)
{
double cx = ax[i] * ax[i] - ay[i] * ay[i];
double cy = 2 * ax[i] * ay[i];
ax[i] = cx, ay[i] = cy;
}
fft(ax, ay, len, 1); for(int i=0; i<len; ++i)
ans[i] = ax[i] + 0.5;
return len;
} int main()
{
int T;
int n;
scanf("%d",&T);
while(T--)
{
scanf("%d",&n);
memset(num, 0, sizeof(num));
for(int i = 0;i < n;i++)
{
scanf("%d", &a[i]);
num[a[i]]++;
}
sort(a, a + n);
int len1 = a[n - 1] + 1;
solve(num, len1, num);
int len = 2 * a[n - 1];
for(int i = 0;i < n;i++) //减掉取两个相同的组合
num[a[i] + a[i]]--; for(int i = 1;i <= len;i++) //选择的无序,除以2
num[i] /= 2;
sum[0] = 0;
for(int i = 1;i <= len;i++)
sum[i] = sum[i - 1] + num[i];
long long cnt = 0;
for(int i = 0;i < n; i++)
{
cnt += sum[len] - sum[a[i]];
cnt -= (long long)(n - 1 - i) * i;//减掉一个取大,一个取小的
cnt -= (n - 1); //减掉一个取本身,另外一个取其它
cnt -= (long long)(n - 1 - i)*(n - i - 2) / 2; //减掉大于它的取两个的组合
}
//总数
long long tot = (long long)n * (n - 1) * (n - 2) / 6;
printf("%.7lf\n",(double)cnt / tot);
}
return 0;
}
DU 4609 3-idiots FFT的更多相关文章
- bzoj 3513: [MUTC2013]idiots FFT
bzoj 3513: [MUTC2013]idiots FFT 链接 bzoj 思路 参考了学姐TRTTG的题解 统计合法方案,最后除以总方案. 合法方案要不好统计,统计不合法方案. \(a+b< ...
- HDU 4609 3-idiots(FFT)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4609 题意:给出n个正整数(数组A).每次随机选出三个数.问这三个数能组成三角形的概率为多大? 思路: ...
- bzoj 3513 [MUTC2013]idiots FFT 生成函数
[MUTC2013]idiots Time Limit: 20 Sec Memory Limit: 128 MBSubmit: 806 Solved: 265[Submit][Status][Di ...
- HDU 4609 3-idiots (组合数学 + FFT)
题意:给定 n 条边,问随机选出 3 条边,能组成三角形的概率是多少. 析:答案很明显就是 能组成三角形的种数 / (C(n, 3)).现在的问题是怎么求能组成三角形的种数. 这个博客说的非常清楚了 ...
- BZOJ3513[MUTC2013]idiots——FFT+生成函数
题目描述 给定n个长度分别为a_i的木棒,问随机选择3个木棒能够拼成三角形的概率. 输入 第一行T(T<=100),表示数据组数. 接下来若干行描述T组数据,每组数据第一行是n,接下来一行有n个 ...
- [MUTC2013][bzoj3513] idiots [FFT]
题面 传送门 思路 首先有一个容斥原理的结论:可以组成三角形的三元组数量=所有三元组-不能组成三角形的三元组 也就是说我们只要求出所有不能组成三角形的三元组即可 我们考虑三元组(a,b,c),a< ...
- 【bzoj3513】[MUTC2013]idiots FFT
题目描述 给定n个长度分别为a_i的木棒,问随机选择3个木棒能够拼成三角形的概率. 输入 第一行T(T<=100),表示数据组数. 接下来若干行描述T组数据,每组数据第一行是n,接下来一行有n个 ...
- HDU 4609 3-idiots ——(FFT)
这是我接触的第一个关于FFT的题目,留个模板. 这题的题解见:http://www.cnblogs.com/kuangbin/archive/2013/07/24/3210565.html. FFT的 ...
- hdu 4609: 3-idiots (FFT)
题目链接 题意:从N个数中,选出三个两两不同的数,求这三个数能够作为一个三角形的三边长的概率. 题解:用一个数组num[]记录大小为 i 的数出现的次数,通过 num[] 卷 num[] 得到 num ...
随机推荐
- caffe+win7+vs2013 仅CPU环境安装
笔者对深度学习一直充满着好奇与兴趣,之前学校都是研究图像处理的特征点方式,机器学习使用也不多,别提深度学习了. 在看了李宏毅大佬的PPT后,有了初步的认识,虽然是渣渣电脑,也想自己跑几个深度模型. 说 ...
- 洛谷P2746校园网
传送门啦 下面来看任务B.我们发现,图中只要存在入度为0的点和出度为0的点就永远不可能满足要求:" 不论我们给哪个学校发送新软件,它都会到达其余所有的学校 ".我们还发现,只要在入 ...
- 关于UrlEncode 一团乱麻的问题,后续彻底理解。Java中的 URLEncoder 与 URLDecoder无bug
很多开放平台都是小白开发的,对这个urlencode理解的不到位,他们总是认为java官方的urlencode有bug,需要 URLEncoder.encode("Hello World&q ...
- 关于RundownProtect到底是什么东西
RundownProtect这个字段相信只要是读过WRK源码的都会看过这个东西,这个字段在进程和线程的结构中都存在.最典型的例子就是对进程要进行什么操作的时候会先引用这个字段进行加保护,等操作结束后再 ...
- hadoop 初探之第二篇(杂谈)
NameNode:名称节点,主要功能在于实现保存文件元数据,这些元数据直接保存在内存中,为了保证元数据的持久性,而也会周期性的同步到磁盘上去.磁盘上的数据通常被称为元数据的映像数据 image fil ...
- Java项目中classpath路径
1.src不是classpath, WEB-INF/classes.lib.resources才是classpath,WEB-INF/是资源目录, 客户端不能直接访问. 2.WEB-INF/class ...
- 一台Windows下配置多个Tomcat服务器
上一篇博客<Windows下配置Tomcat服务器>讲了,如何在一台Windows机器上配置一个Tomcat服务器.这篇介绍一下如何在一台Windows机器上配置多个Tomcat. 第一步 ...
- Bunch 转换为 HDF5 文件:高效存储 Cifar 等数据集
关于如何将数据集封装为 Bunch 可参考 关于 『AI 专属数据库的定制』的改进. PyTables 是 Python 与 HDF5 数据库/文件标准的结合.它专门为优化 I/O 操作的性能.最大限 ...
- PAGELATCH_EX Contention on 2:1:103
This blog post is meant to help people troubleshoot page latch contention on 2:1:103. If that’s what ...
- Git 入门使用
Git是什么? Git是一个开源的分布式版本控制系统,用于敏捷高效地处理任何或小或大的项目. Git 是 Linus Torvalds 为了帮助管理 Linux 内核开发而开发的一个开放源码的版本控制 ...