数学图形之将曲线(curve)转化成曲面管
在我关于数学图形的博客中,一开始讲曲线的生成算法.然后在最近的章节中介绍了圆环,还介绍了螺旋管以及海螺的生成算法.一类是曲线,一类是环面,为什么不将曲线变成环的图形,毕竟曲线看上去太单薄了,这一节我将介绍如何依照曲线(Curve)生成其相应的曲面管.
相关软件参见:数学图形可视化工具,使用自己定义语法的脚本代码生成数学图形.
在圆柱面这一节的最后,我提供了两种算法,以生成朝向任意方向的圆柱面,一种是极坐标原理,另一种是矩阵原理.这一节也是采用这两个原理生成曲面管,因为由曲线生成的曲面管就是若干个有朝向的圆柱面组成.
先看个三维曲线的代码:
圆环面螺线:
#http://xuxzmail.blog.163.com/blog/static/25131916200976114621705/
#Toroidal spiral vertices = t = from to (*PI) r =
n = x = (r+sin(*t))*cos(t)
y = (r+sin(*t))*sin(t)
z = cos(n*t) r = ;
x = x*r
y = y*r
z = z*r

圆环面螺线管(极坐标原理):
#http://xuxzmail.blog.163.com/blog/static/25131916200976114621705/
#Toroidal spiral vertices = D1: D2: u = from to (*PI) D1
v = from to (*PI) D2 r =
n = xq = (r+sin(*v))*cos(v)
yq = (r+sin(*v))*sin(v)
zq = cos(n*v) #由线变管 xd = array_difference(xq, )
yd = array_difference(yq, )
zd = array_difference(zq, ) len = sqrt(xd*xd + yd*yd + zd*zd)
a = xd/len
b = yd/len
c = zd/len radius =0.2 ac = sqrt(a*a + c*c)
angleY = atan2(ac, b)
angleXZ = atan2(a,c) m = cos(u) * radius
n = sin(u) * radius e = sin(angleY)
f = cos(angleY) g = sin(angleXZ)
h = cos(angleXZ) x0 = m
y0 = -n*e
z0 = n*f x1 = x0*h + z0*g
y1 = y0
z1 = -x0*g + z0*h x = x1 + xq
y = y1 + yq
z = z1 + zq

圆环面螺线管(矩阵原理):
#http://xuxzmail.blog.163.com/blog/static/25131916200976114621705/
#Toroidal spiral vertices = D1: D2: u = from to (*PI) D1
v = from to (*PI) D2 r =
n = xq = (r+sin(*v))*cos(v)
yq = (r+sin(*v))*sin(v)
zq = cos(n*v) #由线变管 xd = array_difference(xq, )
yd = array_difference(yq, )
zd = array_difference(zq, ) len = sqrt(xd*xd + yd*yd + zd*zd)
len = max(len, 0.00001)
a = xd/len
b = yd/len
c = zd/len len = sqrt(b*b + c*c)
len = max(len, 0.00001)
m = c/len
n = -b/len i = b*n - c*m
j = - a*n
k = a*m radius = 0.2 x0 = cos(u) * radius
z0 = sin(u) * radius x = x0*i + xq
y = x0*j + z0*m + yq
z = x0*k + z0*n + zq

这是我所写的最复杂的脚本代码了,为了写这种脚本,我不惜将脚本解析器实现对自定义变量的支持.
不过这两种写法都会有点瑕疵,因为在某个情况下拐点时,会出现扭曲,这种瑕疵似乎很难解决.
再举个节的例子:
line_torus_knot(37)
vertices =
t = from to (*PI) p =
q = r = + cos(q/p*t) x = r*sin(t)
y = sin(q/p*t)
z = r*cos(t) r = 0.5 + 0.5*sin(t)
g = 0.5 + 0.5*y
b = 0.5 + 0.5*cos(t)

pipe_torus_knot(37)极坐标原理
vertices = D1: D2: u = from to (*PI) D1
v = from to (*PI) D2 p =
q = r = + cos(q/p*v) xq = r*sin(v)
yq = sin(q/p*v)
zq = r*cos(v) r = 0.5 + 0.5*sin(v)
g = 0.5 + 0.5*yq
b = 0.5 + 0.5*cos(v) #由线变管 xd = array_difference(xq, )
yd = array_difference(yq, )
zd = array_difference(zq, ) len = sqrt(xd*xd + yd*yd + zd*zd)
a = xd/len
b = yd/len
c = zd/len radius = 0.2 ac = sqrt(a*a + c*c)
angleY = atan2(ac, b)
angleXZ = atan2(a,c) m = cos(u) * radius
n = sin(u) * radius e = sin(angleY)
f = cos(angleY) g = sin(angleXZ)
h = cos(angleXZ) x0 = m
y0 = -n*e
z0 = n*f x1 = x0*h + z0*g
y1 = y0
z1 = -x0*g + z0*h x = x1 + xq
y = y1 + yq
z = z1 + zq

pipe_torus_knot(37)矩阵原理
vertices = D1: D2: u = from to (*PI) D1
v = from to (*PI) D2 p =
q = r = + cos(q/p*v) xq = r*sin(v)
yq = sin(q/p*v)
zq = r*cos(v) r = 0.5 + 0.5*sin(v)
g = 0.5 + 0.5*yq
b = 0.5 + 0.5*cos(v) #由线变管 xd = array_difference(xq, )
yd = array_difference(yq, )
zd = array_difference(zq, ) len = sqrt(xd*xd + yd*yd + zd*zd)
px = xd/len
py = yd/len
pz = zd/len len = sqrt(py*py + pz*pz)
len = max(len, 0.00001)
m = pz/len
n = -py/len i = py*n - pz*m
j = - px*n
k = px*m radius = 0.2 x0 = cos(u) * radius
z0 = sin(u) * radius x = x0*i + xq
y = x0*j + z0*m + yq
z = x0*k + z0*n + zq

数学图形之将曲线(curve)转化成曲面管的更多相关文章
- 数学图形(1.35)Kappa curve
		不知道这个曲线和那个运动品牌背靠背有什么关系.阿迪原先的商标是个三叶草,难道背靠背也是由数学图形来的? 以下是维基上的解释. In geometry, the kappa curve or Gutsc ... 
- 数学图形(1.48)Cranioid curve头颅线
		这是一种形似乎头颅的曲线.这种曲线让我想起读研的时候,搞的医学图像三维可视化.那时的原始数据为脑部CT图像.而三维重建中有一种方式是面绘制,是将每一幅CT的颅骨轮廓提取出来,然后一层层地罗列在一起,生 ... 
- 数学图形(2.6)Satellit curve
		这曲线有点像鼓,绕在球上两头是开口的. #http://www.mathcurve.com/courbes3d/satellite/satellite.shtml vertices = t = to ... 
- 数学图形(1.49)Nephroid曲线
		昨天IPhone6在国内发售了,我就顺手发布个关于肾的图形.Nephroid中文意思是肾形的.但是这种曲线它看上去却不像个肾,当你看到它时,你觉得它像什么就是什么吧. The name nephroi ... 
- 数学图形(1.47)贝塞尔(Bézier)曲线
		贝塞尔曲线又称贝兹曲线或贝济埃曲线,是由法国数学家Pierre Bézier所发现,由此为计算机矢量图形学奠定了基础.它的主要意义在于无论是直线或曲线都能在数学上予以描述. 上一节讲的是高次方程曲线, ... 
- 数学图形(1.2)Sin曲线
		相关软件参见:数学图形可视化工具,使用自己定义语法的脚本代码生成数学图形.该软件免费开源.QQ交流群: 367752815 Sin曲线 vertices = x = *PI) to (*PI) y = ... 
- 数学图形(2.19) 利萨茹3D曲线
		在前面的章节数学图形(1.13) 利萨茹曲线中,写的是二维的利萨茹曲线,这一节,将其变为3D图形. #http://www.mathcurve.com/courbes3d/lissajous3d/li ... 
- 数学图形(1.26)Clairaut曲线
		像瓜子样的曲线 相关软件参见:数学图形可视化工具,使用自己定义语法的脚本代码生成数学图形.该软件免费开源.QQ交流群: 367752815 #http://www.mathcurve.com/cour ... 
- 数学图形(1.25)cassini曲线
		通过这种曲线可以看到一种由8到0的过度 相关软件参见:数学图形可视化工具,使用自己定义语法的脚本代码生成数学图形.该软件免费开源.QQ交流群: 367752815 #http://www.mathcu ... 
随机推荐
- 有关FPGA
			在FPGA发展历史上,前后共有过超过50家厂商,在国外目前剩下不到10家,除赛灵思和ALTERA两家持续不断地军备竞赛,其它的都有着各自固守的市场定位.即使是有新进入者,例如受英特尔新工艺支 ... 
- React Native之DeviceEventEmitter发送和接收消息完成事件处理
			今天在Demo这样一个项目的时候,首先遇到的第一个问题就是,每次通过dialog选择[本周.本月.本天]时,伴随着内容重新渲染的时候,tab navigator每次都重新创建和渲染,造成性能浪费和用户 ... 
- tkinter-clock实例
			模仿着前辈的脚步,画了个临时的时钟显示: 代码如下: # coding:utf-8 from tkinter import * import math,time global List global ... 
- python 并集union, 交集intersection, 差集difference, 对称差集symmetric_difference
			python的集合set和其他语言类似,是一个无序不重复元素集, 可用于消除重复元素. 支持union(联合), intersection(交), difference(差)和sysmmetric d ... 
- 通过TortoiseGit上传项目到GitHub
			1.安装msysgit和TortoiseGit : 2.TortoiseGit 设置: (1).确保安装成功: (2).设置用户名和邮箱: 3.登陆github并进入设置页面: 4.添加 SSH Ke ... 
- [BZOJ4883][Lydsy1705月赛]棋盘上的守卫(Kruskal)
			对每行每列分别建一个点,问题转为选n+m条边,并给每条边选一个点覆盖,使每个点都被覆盖.也就是最小生成环套树森林. 用和Kruskal一样的方法,将边从小到大排序,若一条边被选入后连通块仍然是一个环套 ... 
- Problem H: 深入浅出学算法009-韩信点兵
			Description 秦朝末年,楚汉相争.有一次,韩信将1500名将士与楚王大将李锋交战.苦战一场,楚军不敌,败退回营,汉军也死伤四五百人,于是,韩信整顿兵马也返回大本营.当行至一山坡,忽有后军来报 ... 
- 【BZOJ】3195: [Jxoi2012]奇怪的道路【状压/奇偶性】【思路】
			3195: [Jxoi2012]奇怪的道路 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 802 Solved: 529[Submit][Statu ... 
- 模板 SBT
			傻逼树模板 struct SBT{ const static int maxn = 1e5 + 15; int lft[maxn] , rht[maxn] , key[maxn] , s[maxn] ... 
- cocos2dx 3.0 中文 iconv 转换函数
			//#include <string> #pragma once #include "cocos2d.h"; #include "iconv\include\ ... 
