在我关于数学图形的博客中,一开始讲曲线的生成算法.然后在最近的章节中介绍了圆环,还介绍了螺旋管以及海螺的生成算法.一类是曲线,一类是环面,为什么不将曲线变成环的图形,毕竟曲线看上去太单薄了,这一节我将介绍如何依照曲线(Curve)生成其相应的曲面管.

相关软件参见:数学图形可视化工具,使用自己定义语法的脚本代码生成数学图形.

圆柱面这一节的最后,我提供了两种算法,以生成朝向任意方向的圆柱面,一种是极坐标原理,另一种是矩阵原理.这一节也是采用这两个原理生成曲面管,因为由曲线生成的曲面管就是若干个有朝向的圆柱面组成.

先看个三维曲线的代码:

圆环面螺线:

#http://xuxzmail.blog.163.com/blog/static/25131916200976114621705/
#Toroidal spiral vertices = t = from to (*PI) r =
n = x = (r+sin(*t))*cos(t)
y = (r+sin(*t))*sin(t)
z = cos(n*t) r = ;
x = x*r
y = y*r
z = z*r

圆环面螺线管(极坐标原理):

#http://xuxzmail.blog.163.com/blog/static/25131916200976114621705/
#Toroidal spiral vertices = D1: D2: u = from to (*PI) D1
v = from to (*PI) D2 r =
n = xq = (r+sin(*v))*cos(v)
yq = (r+sin(*v))*sin(v)
zq = cos(n*v) #由线变管 xd = array_difference(xq, )
yd = array_difference(yq, )
zd = array_difference(zq, ) len = sqrt(xd*xd + yd*yd + zd*zd)
a = xd/len
b = yd/len
c = zd/len radius =0.2 ac = sqrt(a*a + c*c)
angleY = atan2(ac, b)
angleXZ = atan2(a,c) m = cos(u) * radius
n = sin(u) * radius e = sin(angleY)
f = cos(angleY) g = sin(angleXZ)
h = cos(angleXZ) x0 = m
y0 = -n*e
z0 = n*f x1 = x0*h + z0*g
y1 = y0
z1 = -x0*g + z0*h x = x1 + xq
y = y1 + yq
z = z1 + zq

圆环面螺线管(矩阵原理):

#http://xuxzmail.blog.163.com/blog/static/25131916200976114621705/
#Toroidal spiral vertices = D1: D2: u = from to (*PI) D1
v = from to (*PI) D2 r =
n = xq = (r+sin(*v))*cos(v)
yq = (r+sin(*v))*sin(v)
zq = cos(n*v) #由线变管 xd = array_difference(xq, )
yd = array_difference(yq, )
zd = array_difference(zq, ) len = sqrt(xd*xd + yd*yd + zd*zd)
len = max(len, 0.00001)
a = xd/len
b = yd/len
c = zd/len len = sqrt(b*b + c*c)
len = max(len, 0.00001)
m = c/len
n = -b/len i = b*n - c*m
j = - a*n
k = a*m radius = 0.2 x0 = cos(u) * radius
z0 = sin(u) * radius x = x0*i + xq
y = x0*j + z0*m + yq
z = x0*k + z0*n + zq

这是我所写的最复杂的脚本代码了,为了写这种脚本,我不惜将脚本解析器实现对自定义变量的支持.

不过这两种写法都会有点瑕疵,因为在某个情况下拐点时,会出现扭曲,这种瑕疵似乎很难解决.

再举个节的例子:

line_torus_knot(37)

vertices =
t = from to (*PI) p =
q = r = + cos(q/p*t) x = r*sin(t)
y = sin(q/p*t)
z = r*cos(t) r = 0.5 + 0.5*sin(t)
g = 0.5 + 0.5*y
b = 0.5 + 0.5*cos(t)

pipe_torus_knot(37)极坐标原理

vertices = D1: D2:

u = from  to (*PI) D1
v = from to (*PI) D2 p =
q = r = + cos(q/p*v) xq = r*sin(v)
yq = sin(q/p*v)
zq = r*cos(v) r = 0.5 + 0.5*sin(v)
g = 0.5 + 0.5*yq
b = 0.5 + 0.5*cos(v) #由线变管 xd = array_difference(xq, )
yd = array_difference(yq, )
zd = array_difference(zq, ) len = sqrt(xd*xd + yd*yd + zd*zd)
a = xd/len
b = yd/len
c = zd/len radius = 0.2 ac = sqrt(a*a + c*c)
angleY = atan2(ac, b)
angleXZ = atan2(a,c) m = cos(u) * radius
n = sin(u) * radius e = sin(angleY)
f = cos(angleY) g = sin(angleXZ)
h = cos(angleXZ) x0 = m
y0 = -n*e
z0 = n*f x1 = x0*h + z0*g
y1 = y0
z1 = -x0*g + z0*h x = x1 + xq
y = y1 + yq
z = z1 + zq

pipe_torus_knot(37)矩阵原理

vertices = D1: D2:

u = from  to (*PI) D1
v = from to (*PI) D2 p =
q = r = + cos(q/p*v) xq = r*sin(v)
yq = sin(q/p*v)
zq = r*cos(v) r = 0.5 + 0.5*sin(v)
g = 0.5 + 0.5*yq
b = 0.5 + 0.5*cos(v) #由线变管 xd = array_difference(xq, )
yd = array_difference(yq, )
zd = array_difference(zq, ) len = sqrt(xd*xd + yd*yd + zd*zd)
px = xd/len
py = yd/len
pz = zd/len len = sqrt(py*py + pz*pz)
len = max(len, 0.00001)
m = pz/len
n = -py/len i = py*n - pz*m
j = - px*n
k = px*m radius = 0.2 x0 = cos(u) * radius
z0 = sin(u) * radius x = x0*i + xq
y = x0*j + z0*m + yq
z = x0*k + z0*n + zq

数学图形之将曲线(curve)转化成曲面管的更多相关文章

  1. 数学图形(1.35)Kappa curve

    不知道这个曲线和那个运动品牌背靠背有什么关系.阿迪原先的商标是个三叶草,难道背靠背也是由数学图形来的? 以下是维基上的解释. In geometry, the kappa curve or Gutsc ...

  2. 数学图形(1.48)Cranioid curve头颅线

    这是一种形似乎头颅的曲线.这种曲线让我想起读研的时候,搞的医学图像三维可视化.那时的原始数据为脑部CT图像.而三维重建中有一种方式是面绘制,是将每一幅CT的颅骨轮廓提取出来,然后一层层地罗列在一起,生 ...

  3. 数学图形(2.6)Satellit curve

    这曲线有点像鼓,绕在球上两头是开口的. #http://www.mathcurve.com/courbes3d/satellite/satellite.shtml vertices = t = to ...

  4. 数学图形(1.49)Nephroid曲线

    昨天IPhone6在国内发售了,我就顺手发布个关于肾的图形.Nephroid中文意思是肾形的.但是这种曲线它看上去却不像个肾,当你看到它时,你觉得它像什么就是什么吧. The name nephroi ...

  5. 数学图形(1.47)贝塞尔(Bézier)曲线

    贝塞尔曲线又称贝兹曲线或贝济埃曲线,是由法国数学家Pierre Bézier所发现,由此为计算机矢量图形学奠定了基础.它的主要意义在于无论是直线或曲线都能在数学上予以描述. 上一节讲的是高次方程曲线, ...

  6. 数学图形(1.2)Sin曲线

    相关软件参见:数学图形可视化工具,使用自己定义语法的脚本代码生成数学图形.该软件免费开源.QQ交流群: 367752815 Sin曲线 vertices = x = *PI) to (*PI) y = ...

  7. 数学图形(2.19) 利萨茹3D曲线

    在前面的章节数学图形(1.13) 利萨茹曲线中,写的是二维的利萨茹曲线,这一节,将其变为3D图形. #http://www.mathcurve.com/courbes3d/lissajous3d/li ...

  8. 数学图形(1.26)Clairaut曲线

    像瓜子样的曲线 相关软件参见:数学图形可视化工具,使用自己定义语法的脚本代码生成数学图形.该软件免费开源.QQ交流群: 367752815 #http://www.mathcurve.com/cour ...

  9. 数学图形(1.25)cassini曲线

    通过这种曲线可以看到一种由8到0的过度 相关软件参见:数学图形可视化工具,使用自己定义语法的脚本代码生成数学图形.该软件免费开源.QQ交流群: 367752815 #http://www.mathcu ...

随机推荐

  1. OSPF详解

    OSPF 详解 (1) [此博文包含图片] (2013-02-04 18:02:33) 转载 ▼ 标签: 端的 第二 以太 第一个 正在 目录 序言 初学乍练 循序渐进学习OSPF 朱皓 入门之前 了 ...

  2. linux 下nginx安装

    一.一键安装四个依赖 yum -y install gcc zlib zlib-devel pcre-devel openssl openssl-devel 二.创建一个安装目录,并下载nginx安装 ...

  3. 【知了堂学习笔记】java IO流归纳总结

    皮皮潇最近学到了IO流但是感觉这一块要记的东西太多了,所以重API上查阅并总结了以下几点关于IO的知识. 1.File(文件类): File类是文件以及文件夹进行封装的对象,用对象的思想来操作文件和文 ...

  4. Python 学习经历分享

    如果说 Java 是亲儿子的话,那么 Python 应该就是干儿子了.看了一下所有关于 Python 的笔记,我发现原来我在 4 月份的时候就已经涉足 Python 了,但是到目前为止才真正算做出了一 ...

  5. FGPA 中的计数器Verilog语言(时钟分频器)

    在quartusII8.0中为ALTERAFPGA设置一个分频器(计数器) 输入时钟48Mhz 输出时钟9600HZ /* 实验名称: 计数器 ** 程序功能: 将48Mhz的时钟分频为9600Hz ...

  6. sublime text3安装Package Control和Vue Syntax Highlight

    一.下载Sublime3 https://www.sublimetext.com/3 二.安装Package Control 在线安装: https://packagecontrol.io/insta ...

  7. bzoj 1047 单调队列

    做4次单调队列优化DP. /************************************************************** Problem: 1047 User: idy ...

  8. cdoj 841 休生伤杜景死惊开 逆序数/树状数组

    休生伤杜景死惊开 Time Limit: 3000/1000MS (Java/Others)     Memory Limit: 65535/65535KB (Java/Others) 陆伯言军陷八卦 ...

  9. hdu 刷题记录

    1007 最近点对问题,采用分治法策略搞定 #include<iostream> #include<cmath> #include<algorithm> using ...

  10. UEFI引导模式

    Author: JinDate: 20140827System: windows 刚帮楼下的公司解决了个问题. 原来的办公电脑,预装linux,他们重装成win7.新买的电脑预装成win8,安装出问题 ...