解题:POI 2011 Dynamite
从零开始的DP学习系列之叁
树形DP的基本(常见?)思路:先递归进儿子,然后边回溯边决策,设状态时常设$dp[x]$表示以$x$为根的子树中(具体分析算不算$x$这个点)的情况
显然的二分答案,之后问题转化为用$m$个能覆盖$mid$范围的点能否覆盖所有的特殊点,用树形DP判断
设$unc[nde]$表示以$nde$为根(包含$nde$)的子树中最远的未被覆盖的特殊点的距离,$cov[nde]$以$nde$为根(包含$nde$)的子树中最近的选出的点的距离。有两个从儿子$goal[i]$获取信息的显然的转移
unc[nde]=max(unc[nde],unc[goal[i]]+);
cov[nde]=min(cov[nde],cov[goal[i]]+);
然后考虑对点的选择,首先如果这个点是特殊点,而且$cov[nde]>mid$,说明这个点无法被子树中的点覆盖,只能交给父亲处理,于是更新一下它的$unc$的信息,告诉它的父亲考虑这个点
if(imp[nde]&&cov[nde]>mid) unc[nde]=max(unc[nde],);
接下来考虑这个点的子树中的特殊点(们)能否靠这个点解决,如果$unc[nde]+cov[nde]<=mid$说明这个子树不需要父亲管了
if(unc[nde]+cov[nde]<=mid) unc[nde]=-inf;
最后是考虑是否选择这个点,这里贪心考虑,只在$unc$正好等于$mid$时选择这个点
if(unc[nde]==mid) unc[nde]=-inf,cov[nde]=,tot++;
注意的是根节点没有父亲,要特殊考虑
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int N=,inf=0x3f3f3f3f;
int p[N],noww[*N],goal[*N];
int imp[N],unc[N],cov[N];
int n,m,t1,t2,cnt,tot,l,r,mid,ans;
void link(int f,int t)
{
noww[++cnt]=p[f];
goal[cnt]=t,p[f]=cnt;
}
void DFS(int nde,int fth)
{
unc[nde]=-inf,cov[nde]=inf;
for(int i=p[nde];i;i=noww[i])
if(goal[i]!=fth)
{
DFS(goal[i],nde);
unc[nde]=max(unc[nde],unc[goal[i]]+);
cov[nde]=min(cov[nde],cov[goal[i]]+);
}
if(imp[nde]&&cov[nde]>mid) unc[nde]=max(unc[nde],);
if(unc[nde]+cov[nde]<=mid) unc[nde]=-inf;
if(unc[nde]==mid) unc[nde]=-inf,cov[nde]=,tot++;
}
bool check(int x)
{
tot=; DFS(,);
return tot+(unc[]>=)<=m;
}
int main ()
{
scanf("%d%d",&n,&m),r=n;
for(int i=;i<=n;i++)
scanf("%d",&imp[i]);
for(int i=;i<n;i++)
{
scanf("%d%d",&t1,&t2);
link(t1,t2),link(t2,t1);
}
while(l<=r)
{
mid=(l+r)/;
if(check(mid)) r=mid-,ans=mid;
else l=mid+;
}
printf("%d",ans);
return ;
}
解题:POI 2011 Dynamite的更多相关文章
- [ POI 2011 ] Dynamite
\(\\\) \(Description\) 一棵\(N\)个节点的树,树上有\(M\)个节点是关键点,选出\(K\)个特殊点,使得所有关键点到特殊点的距离中最大的最小,输出最大值最小为多少. \(N ...
- 解题:POI 2011 Strongbox
首先洛谷的题面十分的劝退(至少对我这个菜鸡来说是这样),我来解释一下(原来的英文题面): 有一个有若干个密码(每个密码都可以开箱子)的密码箱,密码是在$0$到$n-1$的数中的,且所有的密码都满足一个 ...
- 【BZOJ 2216】【POI 2011】Lightning Conductor
http://www.lydsy.com/JudgeOnline/problem.php?id=2216 学习了一下决策单调性. 这道题决策单调性比较明显,不详细证了. 对于一个决策i,如果在i之前的 ...
- 【BZOJ 2212】【POI 2011】Tree Rotations
http://www.lydsy.com/JudgeOnline/problem.php?id=2212 自下而上贪心. 需要用权值线段树来记录一个权值区间内的出现次数. 合并线段树时统计逆序对的信息 ...
- bzoj 2276 [ Poi 2011 ] Temperature —— 单调队列
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2276 维护 l 递减的单调队列,队头的 l > 当前的 r 就出队,因为不能是连续一段 ...
- [ POI 2011 ] Party
\(\\\) \(Description\) 给定一张 \(N\ (\ N\equiv 0\pmod{3}\ )\) 个节点,,\(M\)条边的图,并且保证该图存在一个大小至少为\(\frac{2}{ ...
- 洛谷 P3515 [ POI 2011 ] Lightning Conductor —— 决策单调性DP
题目:https://www.luogu.org/problemnew/show/P3515 决策单调性... 参考TJ:https://www.cnblogs.com/CQzhangyu/p/725 ...
- Solution -「POI 2011」「洛谷 P3527」MET-Meteors
\(\mathcal{Description}\) Link. 给定一个大小为 \(n\) 的环,每个结点有一个所属国家.\(k\) 次事件,每次对 \([l,r]\) 区间上的每个点点权加上 ...
- POI题解整合
我也不知道为啥我就想把POI的题全都放到一篇blog里写完. POI 2005 SAM-Toy Cars 贪心,每次选下次出现最晚的. POI 2006 KRA-The Disks 箱子位置单调,所以 ...
随机推荐
- hadoop最新稳定版本使用建议
Apache Hadoop Apache版本衍化比较快,我给大家介绍一下过程 ApacheHadoop版本分为两代,我们将第一代Hadoop称为Hadoop 1.0,第二代Hadoop称为Hadoop ...
- gulp: Did you forget to signal async completion? 解决方案
背景 学习gulp的前端自动化构建,按照示例代码,跑了一个简单的task,控制台打出如下提示: The following tasks did not complete: testGulp Did y ...
- 在NodeJS中使用Redis缓存数据
Redis数据库采用极简的设计思想,最新版的源码包还不到2Mb.其在使用上也有别于一般的数据库. node_redis redis驱动程序多使用 node_redis 此模块可搭载官方的 hiredi ...
- [leetcode-897-Increasing Order Search Tree]
Given a tree, rearrange the tree in in-order so that the leftmost node in the tree is now the root o ...
- sprint2(第四天)
由于最近网络不行,更新的代码push不上Github,组员之间又不能clone得到最新的项目,所以这几天都没有更新到Github 燃尽图
- SpringMvc跨域支持
SpringMvc跨域支持 在controller层加上注解@CrossOrigin可以实现跨域 该注解有两个参数 1,origins : 允许可访问的域列表 2,maxAge:飞行前响应的缓存持续 ...
- 【Alpha】阶段第九次Scrum Meeting
[Alpha]阶段第九次Scrum Meeting 工作情况 团队成员 今日已完成任务 明日待完成任务 刘峻辰 编写获得所有学院接口 登出接口 赵智源 编写alpha版后测试点测试用例 编写脚本实现测 ...
- 渡过OO的死劫,了解规格的意义——OO第三次博客总结
当熬过了一次次黑暗,迎接我们的却是被扣的惨不忍睹的JSF ┭┮﹏┭┮ 一.总结调研 规格的历史 传统科学的特点是发现世界,而软件的特点是构造世界.软件的最底层就是0,1,两个离散的值.程序设计语言的三 ...
- java-switch语句
switch语句是常用的java循环判断语句,但是有的知识点并不一定清楚. 首先是switch语句括号中的判断条件,判断条件只能是整型或者字符和整型或者字符组成的表达式. 再就是case语句,可以称之 ...
- StringBuffer 与 StringBuilder类的使用
/*如果需要频繁修改字符串 的内容,建议使用字符串缓冲 类(StringBuffer). StringBuffer 其实就是一个存储字符 的容器. 笔试题目:使用Stringbuffer无 参的构造函 ...