题面

从零开始的DP学习系列之叁

树形DP的基本(常见?)思路:先递归进儿子,然后边回溯边决策,设状态时常设$dp[x]$表示以$x$为根的子树中(具体分析算不算$x$这个点)的情况

显然的二分答案,之后问题转化为用$m$个能覆盖$mid$范围的点能否覆盖所有的特殊点,用树形DP判断

设$unc[nde]$表示以$nde$为根(包含$nde$)的子树中最远的未被覆盖的特殊点的距离,$cov[nde]$以$nde$为根(包含$nde$)的子树中最近的选出的点的距离。有两个从儿子$goal[i]$获取信息的显然的转移

unc[nde]=max(unc[nde],unc[goal[i]]+);
cov[nde]=min(cov[nde],cov[goal[i]]+);

然后考虑对点的选择,首先如果这个点是特殊点,而且$cov[nde]>mid$,说明这个点无法被子树中的点覆盖,只能交给父亲处理,于是更新一下它的$unc$的信息,告诉它的父亲考虑这个点

if(imp[nde]&&cov[nde]>mid) unc[nde]=max(unc[nde],);

接下来考虑这个点的子树中的特殊点(们)能否靠这个点解决,如果$unc[nde]+cov[nde]<=mid$说明这个子树不需要父亲管了

if(unc[nde]+cov[nde]<=mid) unc[nde]=-inf;

最后是考虑是否选择这个点,这里贪心考虑,只在$unc$正好等于$mid$时选择这个点

if(unc[nde]==mid) unc[nde]=-inf,cov[nde]=,tot++;

注意的是根节点没有父亲,要特殊考虑

 #include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int N=,inf=0x3f3f3f3f;
int p[N],noww[*N],goal[*N];
int imp[N],unc[N],cov[N];
int n,m,t1,t2,cnt,tot,l,r,mid,ans;
void link(int f,int t)
{
noww[++cnt]=p[f];
goal[cnt]=t,p[f]=cnt;
}
void DFS(int nde,int fth)
{
unc[nde]=-inf,cov[nde]=inf;
for(int i=p[nde];i;i=noww[i])
if(goal[i]!=fth)
{
DFS(goal[i],nde);
unc[nde]=max(unc[nde],unc[goal[i]]+);
cov[nde]=min(cov[nde],cov[goal[i]]+);
}
if(imp[nde]&&cov[nde]>mid) unc[nde]=max(unc[nde],);
if(unc[nde]+cov[nde]<=mid) unc[nde]=-inf;
if(unc[nde]==mid) unc[nde]=-inf,cov[nde]=,tot++;
}
bool check(int x)
{
tot=; DFS(,);
return tot+(unc[]>=)<=m;
}
int main ()
{
scanf("%d%d",&n,&m),r=n;
for(int i=;i<=n;i++)
scanf("%d",&imp[i]);
for(int i=;i<n;i++)
{
scanf("%d%d",&t1,&t2);
link(t1,t2),link(t2,t1);
}
while(l<=r)
{
mid=(l+r)/;
if(check(mid)) r=mid-,ans=mid;
else l=mid+;
}
printf("%d",ans);
return ;
}

解题:POI 2011 Dynamite的更多相关文章

  1. [ POI 2011 ] Dynamite

    \(\\\) \(Description\) 一棵\(N\)个节点的树,树上有\(M\)个节点是关键点,选出\(K\)个特殊点,使得所有关键点到特殊点的距离中最大的最小,输出最大值最小为多少. \(N ...

  2. 解题:POI 2011 Strongbox

    首先洛谷的题面十分的劝退(至少对我这个菜鸡来说是这样),我来解释一下(原来的英文题面): 有一个有若干个密码(每个密码都可以开箱子)的密码箱,密码是在$0$到$n-1$的数中的,且所有的密码都满足一个 ...

  3. 【BZOJ 2216】【POI 2011】Lightning Conductor

    http://www.lydsy.com/JudgeOnline/problem.php?id=2216 学习了一下决策单调性. 这道题决策单调性比较明显,不详细证了. 对于一个决策i,如果在i之前的 ...

  4. 【BZOJ 2212】【POI 2011】Tree Rotations

    http://www.lydsy.com/JudgeOnline/problem.php?id=2212 自下而上贪心. 需要用权值线段树来记录一个权值区间内的出现次数. 合并线段树时统计逆序对的信息 ...

  5. bzoj 2276 [ Poi 2011 ] Temperature —— 单调队列

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2276 维护 l 递减的单调队列,队头的 l > 当前的 r 就出队,因为不能是连续一段 ...

  6. [ POI 2011 ] Party

    \(\\\) \(Description\) 给定一张 \(N\ (\ N\equiv 0\pmod{3}\ )\) 个节点,,\(M\)条边的图,并且保证该图存在一个大小至少为\(\frac{2}{ ...

  7. 洛谷 P3515 [ POI 2011 ] Lightning Conductor —— 决策单调性DP

    题目:https://www.luogu.org/problemnew/show/P3515 决策单调性... 参考TJ:https://www.cnblogs.com/CQzhangyu/p/725 ...

  8. Solution -「POI 2011」「洛谷 P3527」MET-Meteors

    \(\mathcal{Description}\)   Link.   给定一个大小为 \(n\) 的环,每个结点有一个所属国家.\(k\) 次事件,每次对 \([l,r]\) 区间上的每个点点权加上 ...

  9. POI题解整合

    我也不知道为啥我就想把POI的题全都放到一篇blog里写完. POI 2005 SAM-Toy Cars 贪心,每次选下次出现最晚的. POI 2006 KRA-The Disks 箱子位置单调,所以 ...

随机推荐

  1. Streamr助你掌控自己的数据(1)——教你5分钟上传数据至Streamr

    博客说明 所有刊发内容均可转载但是需要注明出处. 教你5分钟上传数据至Streamr 本系列文档主要介绍怎么通过Streamr管理自己的DATA,整个系列包括三篇教程文档,分别是:教你5分钟上传数据至 ...

  2. 关于linux下的命令

    1.文件和目录操作命令 pwd:显示当前的工作目录 cd:切换目录 tree:以树形结构图显示目录下的所有内容 mkdir:创建目录 touch:创建空文件或改变文件的时间戳属性 ls:显示目录下的内 ...

  3. HTML基础学习总结

    一.HTML的一些基本描述 全称:Hyper Text Markup Language 定义:超文本标记语言,是标记语言而不是编程语言,使用标记标签来描述网页,所以也被称为网页 格式:标签对里面放纯文 ...

  4. 编程之法section II: 2.1 求最小的k个数

    ====数组篇==== 2.1 求最小的k个数: 题目描述:有n个整数,请找出其中最小的k个数,要求时间复杂度尽可能低. 解法一: 思路:快排后输出前k个元素,O(nlogn). writer: zz ...

  5. 超实用 1 ArrayList 链表

    package ArrayList链表; import java.util.*; public class kk1 { /** * 作者:Mr.Fan * 功能:记住ArrayList链表 */ pu ...

  6. 第一次spring冲刺第6天

    鉴于昨天的调查,今天做了个谈论,主要针对以下几个问题 1.我们的客户类型? 2.如何实现他们的需求? 3.他们真正想要什么? 4.如何保证他们的满足度? 5.怎么使得工程不陷入死循环? 6.还存在什么 ...

  7. VS团队资源管理器(VS自带git)使用说明_使用VS自带git推送到远程存储库

    使用git存储库是相当好的习惯,每次码完代码就推送到远程存储库,万一不小心把本地代码搞废了,或者硬盘坏了,或者中了勒索病毒,本地代码丢失了还能从服务器上下载.我曾经就中了一次勒索病毒,本地电脑上的所有 ...

  8. TCP连接 三次握手 四次挥手

    前言: TCP协议是面向连接.安全可靠.基于字节流的传输层协议,在进行http协议访问时就用到了tcp连接.在建立TCP连接时需要经历三次握手,断开连接时需要经历四次挥手.在此进行记录. 内容: TC ...

  9. set_magic_quotes_runtime

    在php的配置文件中,有个布尔值的设置,就是magic_quotes_runtime,当它打开时,php的大部分函数自动的给从外部引入的(包括数据库或者文件)数据中的溢出字符加上反斜线. 当然如果重复 ...

  10. Python中pip install MySQL-python报错解决方法

    环境 Centos 7(其他Centos或者RHEL一样) 问题 在执行 pip install MySQL-python 时报错如: Command "python setup.py eg ...