顺序对齐

题目描述

考虑两个字符串右对齐的最佳解法。例如,有一个右对齐方案中字符串是 AADDEFGGHC 和 ADCDEGH。

AAD~DEFGGHC

ADCDE~~GH~

每一个数值匹配的位置值 2 分,一段连续的空格值 -1 分。所以总分是匹配点的 2 倍减去连续空格的段数,在上述给定的例子中,6 个位置 (A,D,D,E,G,H) 匹配,三段空格,所以得分 2*6+(-1)*3=9,注意,我们并不处罚左边的不匹配位置。若匹配的位置是两个不同的字符,则既不得分也不失分。

请你写个程序找出最佳右对齐方案。

输入格式

输入文件包含两行,每行一个字符串,最长 50 个字符。字符全部是大字字母。

输出格式

输出一个整数,为最佳对齐的得分。

样例数据 1

输入

AADDEFGGHC

ADCDEGH

输出

9

一道一眼题,一看就是基础dp" role="presentation" style="position: relative;">dpdp,设f[i][j]" role="presentation" style="position: relative;">f[i][j]f[i][j]表示a" role="presentation" style="position: relative;">aa串中第i" role="presentation" style="position: relative;">ii个跟b" role="presentation" style="position: relative;">bb串中第j" role="presentation" style="position: relative;">jj个匹配时收益最大值。这样状态转移方程就很显然了吧。我们知道两个字串在同样的位置出现空格是不优秀的。这样的话,f[i][j]" role="presentation" style="position: relative;">f[i][j]f[i][j]就只能由f[i−1][k]" role="presentation" style="position: relative;">f[i−1][k]f[i−1][k]和f[k][j−1]" role="presentation" style="position: relative;">f[k][j−1]f[k][j−1]推出来,最后统计答案就行了。

代码如下:

#include<bits/stdc++.h>
using namespace std;
char a[55],b[55];
int la,lb,f[55][55],ans=0;
int main(){
    scanf("%s%s",a+1,b+1);
    la=strlen(a+1),lb=strlen(b+1);
    memset(f,0,sizeof(f));
    for(int i=1;i<=la;++i)if(a[i]==b[1])f[i][1]=2;
    for(int i=1;i<=lb;++i)if(a[1]==b[i])f[1][i]=2;
    for(int i=2;i<=la;++i)
        for(int j=2;j<=lb;++j){
            f[i][j]=f[i-1][j-1];
            for(int k=1;k<i-1;++k)f[i][j]=max(f[k][j-1]-1,f[i][j]);
            for(int k=1;k<j-1;++k)f[i][j]=max(f[i-1][k]-1,f[i][j]);
            f[i][j]+=2*(a[i]==b[j]);
        }
    for(int i=1;i<=la;++i)ans=max(ans,f[i][lb]-1*(i!=la));
    for(int i=1;i<=lb;++i)ans=max(ans,f[la][i]-1*(i!=lb));
    printf("%d",ans);
    return 0;
}

2018.07.09 顺序对齐(线性dp)的更多相关文章

  1. 2018.07.09 洛谷P2365 任务安排(线性dp)

    P2365 任务安排 题目描述 N个任务排成一个序列在一台机器上等待完成(顺序不得改变),这N个任务被分成若干批,每批包含相邻的若干任务.从时刻0开始,这些任务被分批加工,第i个任务单独完成所需的时间 ...

  2. 2018.09.21 codeforces1051D. Bicolorings(线性dp)

    传送门 sb线性DP. f[i][j][0/1/2/3]f[i][j][0/1/2/3]f[i][j][0/1/2/3]表示前i列j个连通块且第i列状态为00/01/10/11时的方案总数. 这个显然 ...

  3. 2018.08.16 洛谷P2029 跳舞(线性dp)

    传送门 简单的线性dp" role="presentation" style="position: relative;">dpdp. 直接推一推 ...

  4. 【洛谷P1854】花店橱窗 线性dp+路径输出

    题目大意:给定 N 个数字,编号分别从 1 - N,M 个位置,N 个数字按照相对大小顺序放在 M 个位置里,每个数放在每个位置上有一个对答案的贡献值,求一种摆放方式使得贡献值最大. 题解:一道典型的 ...

  5. 动态规划_线性dp

    https://www.cnblogs.com/31415926535x/p/10415694.html 线性dp是很基础的一种动态规划,,经典题和他的变种有很多,比如两个串的LCS,LIS,最大子序 ...

  6. 线性dp

    线性dp应该是dp中比较简单的一类,不过也有难的.(矩乘优化递推请出门右转) 线性dp一般是用前面的状态去推后面的,也有用后面往前面推的,这时候把循环顺序倒一倒就行了.如果有的题又要从前往后推又要从后 ...

  7. CH5102 Mobile Service【线性dp】

    5102 Mobile Service 0x50「动态规划」例题 描述 一个公司有三个移动服务员,最初分别在位置1,2,3处.如果某个位置(用一个整数表示)有一个请求,那么公司必须指派某名员工赶到那个 ...

  8. CH 5102 Mobile Service(线性DP)

    CH 5102 Mobile Service \(solution:\) 这道题很容易想到DP,因为题目里已经说了要按顺序完成这些请求.所以我们可以线性DP,但是这一题的状态不是很好设,因为数据范围有 ...

  9. [CodeForces - 1272D] Remove One Element 【线性dp】

    [CodeForces - 1272D] Remove One Element [线性dp] 标签:题解 codeforces题解 dp 线性dp 题目描述 Time limit 2000 ms Me ...

随机推荐

  1. Python library not found: libpython2.7mu.so.1.0

    在使用pyinstaller生成python可执行文件的时候,包错误,提示有几个依赖的库找不到:Python library not found: libpython2.7mu.so.1.0 参考st ...

  2. Linux 如何将一个文件夹的所有内容授权给某一个用户

    我们可以使用chown命令,ch这里代表change(改变)的意思,own代表英文单词的owner(拥有者),连在一起就是 change owner ,改变某个文件或者文件夹的拥有者. 一般只有roo ...

  3. 使用ngxtop实时监控nginx

    Ngxtop实时解析nginx访问日志,并且将处理结果输出到终端,功能类似于系统命令top,所以这个软件起名ngxtop.有了ngxtop,你可以实时了解到当前nginx的访问状况,再也不需要tail ...

  4. one by one 项目 part 3

    mysql error:Table 'performance_schema.session_variables' doesn't exist 打开cmd 输入:mysql_upgrade -u roo ...

  5. 注册驱动MySQL的驱动程序

    1.将驱动程序文件添加到应用项目 将驱动程序mysql-connector-Java-5.1.6-bin,复制到web应用程序的web-INF\lib下,web应用程序就可以通过JDBC接口访问MyS ...

  6. Process子类

    创建新的进程还能够使用类的方式,可以自定义一个类,继承Process类,每次实例化这个类的时候,就等同于实例化一个进程对象,请看下面的实例: from multiprocessing import P ...

  7. Mysql 内部默认排序

    mysql默认的排序: https://forums.mysql.com/read.php?21,239471,239688#msg-239688 Do not depend on order whe ...

  8. linux的文件类型和权限

    Linux下使用ll或ls -l查看文件的信息 (ll和ls-l的区别:ll会显示出当前目录下的隐藏文件,而ls -l不会)   文件信息分为:文件类型.权限.链接数.所属用户.所属用户组.文件大小. ...

  9. nat 类型及打洞原理

    nat 类型分4种 1.全锥形 full cone A 与 主机B交互,nat转换 A的内部地址及端口为  ip1 port1,ip1和port1为对外地址,任何机器能访问. 2.ip 受限制(对B而 ...

  10. oracle查询锁表

    select b.username,b.sid,b.serial#,logon_time from v$locked_object a,v$session b where a.session_id = ...