描述

The cows have once again tried to form a startup company, failing to remember from past experience t hat cows make terrible managers!The cows, conveniently numbered 1…N1…N (1≤N≤100,000), organize t he company as a tree, with cow 1 as the president (the root of the tree). Each cow except the presid ent has a single manager (its “parent” in the tree). Each cow ii has a distinct proficiency rating, p(i), which describes how good she is at her job. If cow ii is an ancestor (e.g., a manager of a man ager of a manager) of cow jj, then we say jj is a subordinate of ii. Unfortunately, the cows find that it is often the case that a manager has less proficiency than seve ral of her subordinates, in which case the manager should consider promoting some of her subordinate s. Your task is to help the cows figure out when this is happening. For each cow ii in the company, please count the number of subordinates jj where p(j)>p(i). n只奶牛构成了一个树形的公司,每个奶牛有一个能力值pi,1号奶牛为树根。 问对于每个奶牛来说,它的子树中有几个能力值比它大的。

输入

The first line of input contains N The next N lines of input contain the proficiency ratings p(1)…p(N) for the cows. Each is a distinct integer in the range 1…1,000,000,000 The next N-1 lines describe the manager (parent) for cows 2…N Recall that cow 1 has no manager, being the president. n,表示有几只奶牛 n<=100000 接下来n行为1-n号奶牛的能力值pi 接下来n-1行为2-n号奶牛的经理(树中的父亲)

输出

Please print N lines of output. The ith line of output should tell the number of subordinates of cow ii with higher proficiency than cow i. 共n行,每行输出奶牛i的下属中有几个能力值比i大

样例输入

5

804289384

846930887

681692778

714636916

957747794

1

1

2

3

样例输出

2

0

1

0

0

康复训练ing。。。

这题本蒟蒻用线段树合并水过去了。。。

暂时没想到其它的做法毕竟实力太弱了

代码;

#include<bits/stdc++.h>
#define N 100005
using namespace std;
inline int read(){
    int ans=0;
    char ch=getchar();
    while(!isdigit(ch))ch=getchar();
    while(isdigit(ch))ans=(ans<<3)+(ans<<1)+(ch^48),ch=getchar();
    return ans;
}
inline void write(int x){
    if(x>9)write(x/10);
    putchar((x%10)^48);
}
int ans[N],a[N],b[N],n,sig,first[N],tot=0,cnt=0,rt[N],siz[N*20],son[N*20][2];
struct edge{int v,next;}e[N<<1];
inline void add(int u,int v){e[++cnt].v=v,e[cnt].next=first[u],first[u]=cnt;}
inline void modify(int&p,int l,int r,int k){
    if(!p)p=++tot;
    if(l==r){siz[p]=1;return;}
    int mid=l+r>>1;
    if(k<=mid)modify(son[p][0],l,mid,k);
    else modify(son[p][1],mid+1,r,k);
    siz[p]=siz[son[p][0]]+siz[son[p][1]];
}
inline int merge(int x,int y,int l,int r){
    if(!x||!y)return x+y;
    if(l==r){siz[x]+=siz[y];return x;}
    int mid=l+r>>1;
    son[x][0]=merge(son[x][0],son[y][0],l,mid);
    son[x][1]=merge(son[x][1],son[y][1],mid+1,r);
    siz[x]=siz[son[x][0]]+siz[son[x][1]];
    return x;
}
inline int query(int p,int l,int r,int v){
    if(l==r)return siz[p];
    int mid=l+r>>1;
    if(v<=mid)return query(son[p][0],l,mid,v)+siz[son[p][1]];
    return query(son[p][1],mid+1,r,v);
}
inline void dfs(int p){
    for(int i=first[p];i;i=e[i].next){
        int v=e[i].v;
        dfs(v);
        rt[p]=merge(rt[p],rt[v],1,sig);
    }
    ans[p]=query(rt[p],1,sig,a[p])-1;
}
int main(){
    n=read();
    for(int i=1;i<=n;++i)a[i]=b[i]=read();
    sort(b+1,b+n+1),sig=unique(b+1,b+n+1)-b-1;
    for(int i=1;i<=n;++i)modify(rt[i],1,sig,(a[i]=(lower_bound(b+1,b+sig+1,a[i])-b)));
    for(int i=2;i<=n;++i)add(read(),i);
    dfs(1);
    for(int i=1;i<=n;++i)write(ans[i]),puts("");
    return 0;
}

2018.08.27 [Usaco2017 Jan]Promotion Counting(线段树合并)的更多相关文章

  1. BZOJ4756: [Usaco2017 Jan]Promotion Counting(线段树合并)

    题意 题目链接 Sol 线段树合并板子题 #include<bits/stdc++.h> using namespace std; const int MAXN = 400000, SS ...

  2. BZOJ[Usaco2017 Jan]Promotion Counting——线段树合并

    题目描述 The cows have once again tried to form a startup company, failing to remember from past experie ...

  3. bzoj 4756 [Usaco2017 Jan]Promotion Counting——线段树合并

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4756 线段树合并裸题.那种返回 int 的与传引用的 merge 都能过.不知别的题是不是这 ...

  4. BZOJ4756:[USACO]Promotion Counting(线段树合并)

    Description n只奶牛构成了一个树形的公司,每个奶牛有一个能力值pi,1号奶牛为树根. 问对于每个奶牛来说,它的子树中有几个能力值比它大的. Input n,表示有几只奶牛 n<=10 ...

  5. bzoj 4756 Promotion Counting —— 线段树合并

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4756 合并子树的权值线段树: merge 返回 int 或者是 void 都可以. 代码如下 ...

  6. 【bzoj4756】[Usaco2017 Jan]Promotion Counting 离散化+树状数组

    原文地址:http://www.cnblogs.com/GXZlegend/p/6832263.html 题目描述 The cows have once again tried to form a s ...

  7. [BZOJ4756][Usaco2017 Jan]Promotion Counting 树状数组

    4756: [Usaco2017 Jan]Promotion Counting Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 305  Solved: ...

  8. 线段树合并 || 树状数组 || 离散化 || BZOJ 4756: [Usaco2017 Jan]Promotion Counting || Luogu P3605 [USACO17JAN]Promotion Counting晋升者计数

    题面:P3605 [USACO17JAN]Promotion Counting晋升者计数 题解:这是一道万能题,树状数组 || 主席树 || 线段树合并 || 莫队套分块 || 线段树 都可以写..记 ...

  9. 【dsu || 线段树合并】bzoj4756: [Usaco2017 Jan]Promotion Counting

    调半天原来是dsu写不熟 Description The cows have once again tried to form a startup company, failing to rememb ...

随机推荐

  1. maven错误

    maven-enforcer-plugin (goal "enforce") is ignored by m2e. Plugin execution not covered by ...

  2. FD 设置字体大小

    英文版: 依次选择菜单 Tools ->Syntax Coloring 中文版本: 如依次选择菜单 工具 ->语法配色器

  3. ImageIO(图像处理)

    1.通过ImageIO的read和writer,对图像文件进行处理. BufferedImage buffImage = ImageIO.read(file); // 将图像输出到Servlet输出流 ...

  4. js函数中变量声明提前

    <!DOCTYPE html><html lang="en"><head> <meta charset="UTF-8" ...

  5. 吴裕雄 数据挖掘与分析案例实战(2)——python数据结构及方法、控制流、字符串处理、自定义函数

    list1 = ['张三','男',33,'江苏','硕士','已婚',['身高178','体重72']]# 取出第一个元素print(list1[0])# 取出第四个元素print(list1[3] ...

  6. jenkins systemctl启动失败

    centos yum或者rpm安装jenkins后起不来 vi /etc/init.d/jenkins candidates="/usr/local/jdk1.8.0_171/bin/jav ...

  7. Ansible Playbook Roles and Include Statements

    介绍 虽然可以在一个非常大的文件中编写一个playbook(您可能会以这种方式开始学习playbook),但最终您将需要重新使用文件并开始组织事情. 在基本级别,饱含任务的文件允许您将配置策略分解成较 ...

  8. cmd 获取 拖拽文件名

    1. @echo off & setlocal enableDelayedExpansion set a= set /p a=Please drag your txt file for spl ...

  9. Cookie的Domain属性

    Cookie 加了Domain后就写不进去了(不加domain就可以写进去了) 本地测试的时候需要把domain换成localhost cookie跨域的问题,意思就是说A.com下能访问B.com域 ...

  10. python的range函数与切片操作符

    range(start,stop,step)参数含义:start:计数从start开始.默认是从0开始.例如range(5)等价于range(0, 5);end:计数到end结束,但不包括end.例如 ...