描述

The cows have once again tried to form a startup company, failing to remember from past experience t hat cows make terrible managers!The cows, conveniently numbered 1…N1…N (1≤N≤100,000), organize t he company as a tree, with cow 1 as the president (the root of the tree). Each cow except the presid ent has a single manager (its “parent” in the tree). Each cow ii has a distinct proficiency rating, p(i), which describes how good she is at her job. If cow ii is an ancestor (e.g., a manager of a man ager of a manager) of cow jj, then we say jj is a subordinate of ii. Unfortunately, the cows find that it is often the case that a manager has less proficiency than seve ral of her subordinates, in which case the manager should consider promoting some of her subordinate s. Your task is to help the cows figure out when this is happening. For each cow ii in the company, please count the number of subordinates jj where p(j)>p(i). n只奶牛构成了一个树形的公司,每个奶牛有一个能力值pi,1号奶牛为树根。 问对于每个奶牛来说,它的子树中有几个能力值比它大的。

输入

The first line of input contains N The next N lines of input contain the proficiency ratings p(1)…p(N) for the cows. Each is a distinct integer in the range 1…1,000,000,000 The next N-1 lines describe the manager (parent) for cows 2…N Recall that cow 1 has no manager, being the president. n,表示有几只奶牛 n<=100000 接下来n行为1-n号奶牛的能力值pi 接下来n-1行为2-n号奶牛的经理(树中的父亲)

输出

Please print N lines of output. The ith line of output should tell the number of subordinates of cow ii with higher proficiency than cow i. 共n行,每行输出奶牛i的下属中有几个能力值比i大

样例输入

5

804289384

846930887

681692778

714636916

957747794

1

1

2

3

样例输出

2

0

1

0

0

康复训练ing。。。

这题本蒟蒻用线段树合并水过去了。。。

暂时没想到其它的做法毕竟实力太弱了

代码;

#include<bits/stdc++.h>
#define N 100005
using namespace std;
inline int read(){
    int ans=0;
    char ch=getchar();
    while(!isdigit(ch))ch=getchar();
    while(isdigit(ch))ans=(ans<<3)+(ans<<1)+(ch^48),ch=getchar();
    return ans;
}
inline void write(int x){
    if(x>9)write(x/10);
    putchar((x%10)^48);
}
int ans[N],a[N],b[N],n,sig,first[N],tot=0,cnt=0,rt[N],siz[N*20],son[N*20][2];
struct edge{int v,next;}e[N<<1];
inline void add(int u,int v){e[++cnt].v=v,e[cnt].next=first[u],first[u]=cnt;}
inline void modify(int&p,int l,int r,int k){
    if(!p)p=++tot;
    if(l==r){siz[p]=1;return;}
    int mid=l+r>>1;
    if(k<=mid)modify(son[p][0],l,mid,k);
    else modify(son[p][1],mid+1,r,k);
    siz[p]=siz[son[p][0]]+siz[son[p][1]];
}
inline int merge(int x,int y,int l,int r){
    if(!x||!y)return x+y;
    if(l==r){siz[x]+=siz[y];return x;}
    int mid=l+r>>1;
    son[x][0]=merge(son[x][0],son[y][0],l,mid);
    son[x][1]=merge(son[x][1],son[y][1],mid+1,r);
    siz[x]=siz[son[x][0]]+siz[son[x][1]];
    return x;
}
inline int query(int p,int l,int r,int v){
    if(l==r)return siz[p];
    int mid=l+r>>1;
    if(v<=mid)return query(son[p][0],l,mid,v)+siz[son[p][1]];
    return query(son[p][1],mid+1,r,v);
}
inline void dfs(int p){
    for(int i=first[p];i;i=e[i].next){
        int v=e[i].v;
        dfs(v);
        rt[p]=merge(rt[p],rt[v],1,sig);
    }
    ans[p]=query(rt[p],1,sig,a[p])-1;
}
int main(){
    n=read();
    for(int i=1;i<=n;++i)a[i]=b[i]=read();
    sort(b+1,b+n+1),sig=unique(b+1,b+n+1)-b-1;
    for(int i=1;i<=n;++i)modify(rt[i],1,sig,(a[i]=(lower_bound(b+1,b+sig+1,a[i])-b)));
    for(int i=2;i<=n;++i)add(read(),i);
    dfs(1);
    for(int i=1;i<=n;++i)write(ans[i]),puts("");
    return 0;
}

2018.08.27 [Usaco2017 Jan]Promotion Counting(线段树合并)的更多相关文章

  1. BZOJ4756: [Usaco2017 Jan]Promotion Counting(线段树合并)

    题意 题目链接 Sol 线段树合并板子题 #include<bits/stdc++.h> using namespace std; const int MAXN = 400000, SS ...

  2. BZOJ[Usaco2017 Jan]Promotion Counting——线段树合并

    题目描述 The cows have once again tried to form a startup company, failing to remember from past experie ...

  3. bzoj 4756 [Usaco2017 Jan]Promotion Counting——线段树合并

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4756 线段树合并裸题.那种返回 int 的与传引用的 merge 都能过.不知别的题是不是这 ...

  4. BZOJ4756:[USACO]Promotion Counting(线段树合并)

    Description n只奶牛构成了一个树形的公司,每个奶牛有一个能力值pi,1号奶牛为树根. 问对于每个奶牛来说,它的子树中有几个能力值比它大的. Input n,表示有几只奶牛 n<=10 ...

  5. bzoj 4756 Promotion Counting —— 线段树合并

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4756 合并子树的权值线段树: merge 返回 int 或者是 void 都可以. 代码如下 ...

  6. 【bzoj4756】[Usaco2017 Jan]Promotion Counting 离散化+树状数组

    原文地址:http://www.cnblogs.com/GXZlegend/p/6832263.html 题目描述 The cows have once again tried to form a s ...

  7. [BZOJ4756][Usaco2017 Jan]Promotion Counting 树状数组

    4756: [Usaco2017 Jan]Promotion Counting Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 305  Solved: ...

  8. 线段树合并 || 树状数组 || 离散化 || BZOJ 4756: [Usaco2017 Jan]Promotion Counting || Luogu P3605 [USACO17JAN]Promotion Counting晋升者计数

    题面:P3605 [USACO17JAN]Promotion Counting晋升者计数 题解:这是一道万能题,树状数组 || 主席树 || 线段树合并 || 莫队套分块 || 线段树 都可以写..记 ...

  9. 【dsu || 线段树合并】bzoj4756: [Usaco2017 Jan]Promotion Counting

    调半天原来是dsu写不熟 Description The cows have once again tried to form a startup company, failing to rememb ...

随机推荐

  1. Java 9 模块化(Modularity)

    JDK9的发布一直在推迟,终于在2017年9月21日发布了.下面是JDK9的几个下载地址: JDK9.0.1 Windows-x64下载地址 Oracle Java 官网下载地址 OpenJDK 9官 ...

  2. 基于OpenGL编写一个简易的2D渲染框架-02 搭建OpenGL环境

    由于没有使用GLFW库,接下来得费一番功夫. 阅读这篇文章前请看一下这个网页:https://learnopengl-cn.github.io/01%20Getting%20started/02%20 ...

  3. 4 python内置函数

    1.内置函数的整体介绍 内置参数官方详解 https://docs.python.org/3/library/functions.html?highlight=built#ascii 2.各内置函数介 ...

  4. mysql查看进程

    select * from information_schema.processlist 查询所有连接到数据库的进程信息.

  5. ansible随记

    先来看一下ansible架构图: 一.官网的语法简单介绍 #选择的主机组 - hosts: webservers #这个是变量   vars:     http_port: 80     max_cl ...

  6. (4)shiro多个realm

    shiro支持多个realm,当设置多个realm的时候,shiro的认证和授权的步骤是怎样的呢. 多个realm认证原理: 发现需要在执行认证的时候,需要策略来处理多个realm存在的情况.默认实现 ...

  7. java public project default private

  8. ssh 免密码登录,以及 本地和远端用户名不一致 问题

    ssh 远程登录 ssh -l u1 u1@192.168.0.7 ssh u1@192.168.0.7 每次远程都要输入 用户名,密码 比较麻烦.所以比较好的是免密码登录 1.安装ssh服务器 su ...

  9. Git操作的一些注意

    这是在在学习Git时遇到的一些需要注意的地方,都是一些小细节的地方,可能会有错误的地方,希望大家可以指出谢谢   1.git使用,安装后,首先要打开git bash   2.必须登录后才可以操作git ...

  10. gcd,扩展欧几里得,中国剩余定理

    1.gcd: int gcd(int a,int b){ ?a:gcd(b,a%b); } 2.中国剩余定理: 题目:学生A依次给n个整数a[],学生B相应给n个正整数m[]且两两互素,老师提出问题: ...