描述

The cows have once again tried to form a startup company, failing to remember from past experience t hat cows make terrible managers!The cows, conveniently numbered 1…N1…N (1≤N≤100,000), organize t he company as a tree, with cow 1 as the president (the root of the tree). Each cow except the presid ent has a single manager (its “parent” in the tree). Each cow ii has a distinct proficiency rating, p(i), which describes how good she is at her job. If cow ii is an ancestor (e.g., a manager of a man ager of a manager) of cow jj, then we say jj is a subordinate of ii. Unfortunately, the cows find that it is often the case that a manager has less proficiency than seve ral of her subordinates, in which case the manager should consider promoting some of her subordinate s. Your task is to help the cows figure out when this is happening. For each cow ii in the company, please count the number of subordinates jj where p(j)>p(i). n只奶牛构成了一个树形的公司,每个奶牛有一个能力值pi,1号奶牛为树根。 问对于每个奶牛来说,它的子树中有几个能力值比它大的。

输入

The first line of input contains N The next N lines of input contain the proficiency ratings p(1)…p(N) for the cows. Each is a distinct integer in the range 1…1,000,000,000 The next N-1 lines describe the manager (parent) for cows 2…N Recall that cow 1 has no manager, being the president. n,表示有几只奶牛 n<=100000 接下来n行为1-n号奶牛的能力值pi 接下来n-1行为2-n号奶牛的经理(树中的父亲)

输出

Please print N lines of output. The ith line of output should tell the number of subordinates of cow ii with higher proficiency than cow i. 共n行,每行输出奶牛i的下属中有几个能力值比i大

样例输入

5

804289384

846930887

681692778

714636916

957747794

1

1

2

3

样例输出

2

0

1

0

0

康复训练ing。。。

这题本蒟蒻用线段树合并水过去了。。。

暂时没想到其它的做法毕竟实力太弱了

代码;

#include<bits/stdc++.h>
#define N 100005
using namespace std;
inline int read(){
    int ans=0;
    char ch=getchar();
    while(!isdigit(ch))ch=getchar();
    while(isdigit(ch))ans=(ans<<3)+(ans<<1)+(ch^48),ch=getchar();
    return ans;
}
inline void write(int x){
    if(x>9)write(x/10);
    putchar((x%10)^48);
}
int ans[N],a[N],b[N],n,sig,first[N],tot=0,cnt=0,rt[N],siz[N*20],son[N*20][2];
struct edge{int v,next;}e[N<<1];
inline void add(int u,int v){e[++cnt].v=v,e[cnt].next=first[u],first[u]=cnt;}
inline void modify(int&p,int l,int r,int k){
    if(!p)p=++tot;
    if(l==r){siz[p]=1;return;}
    int mid=l+r>>1;
    if(k<=mid)modify(son[p][0],l,mid,k);
    else modify(son[p][1],mid+1,r,k);
    siz[p]=siz[son[p][0]]+siz[son[p][1]];
}
inline int merge(int x,int y,int l,int r){
    if(!x||!y)return x+y;
    if(l==r){siz[x]+=siz[y];return x;}
    int mid=l+r>>1;
    son[x][0]=merge(son[x][0],son[y][0],l,mid);
    son[x][1]=merge(son[x][1],son[y][1],mid+1,r);
    siz[x]=siz[son[x][0]]+siz[son[x][1]];
    return x;
}
inline int query(int p,int l,int r,int v){
    if(l==r)return siz[p];
    int mid=l+r>>1;
    if(v<=mid)return query(son[p][0],l,mid,v)+siz[son[p][1]];
    return query(son[p][1],mid+1,r,v);
}
inline void dfs(int p){
    for(int i=first[p];i;i=e[i].next){
        int v=e[i].v;
        dfs(v);
        rt[p]=merge(rt[p],rt[v],1,sig);
    }
    ans[p]=query(rt[p],1,sig,a[p])-1;
}
int main(){
    n=read();
    for(int i=1;i<=n;++i)a[i]=b[i]=read();
    sort(b+1,b+n+1),sig=unique(b+1,b+n+1)-b-1;
    for(int i=1;i<=n;++i)modify(rt[i],1,sig,(a[i]=(lower_bound(b+1,b+sig+1,a[i])-b)));
    for(int i=2;i<=n;++i)add(read(),i);
    dfs(1);
    for(int i=1;i<=n;++i)write(ans[i]),puts("");
    return 0;
}

2018.08.27 [Usaco2017 Jan]Promotion Counting(线段树合并)的更多相关文章

  1. BZOJ4756: [Usaco2017 Jan]Promotion Counting(线段树合并)

    题意 题目链接 Sol 线段树合并板子题 #include<bits/stdc++.h> using namespace std; const int MAXN = 400000, SS ...

  2. BZOJ[Usaco2017 Jan]Promotion Counting——线段树合并

    题目描述 The cows have once again tried to form a startup company, failing to remember from past experie ...

  3. bzoj 4756 [Usaco2017 Jan]Promotion Counting——线段树合并

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4756 线段树合并裸题.那种返回 int 的与传引用的 merge 都能过.不知别的题是不是这 ...

  4. BZOJ4756:[USACO]Promotion Counting(线段树合并)

    Description n只奶牛构成了一个树形的公司,每个奶牛有一个能力值pi,1号奶牛为树根. 问对于每个奶牛来说,它的子树中有几个能力值比它大的. Input n,表示有几只奶牛 n<=10 ...

  5. bzoj 4756 Promotion Counting —— 线段树合并

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4756 合并子树的权值线段树: merge 返回 int 或者是 void 都可以. 代码如下 ...

  6. 【bzoj4756】[Usaco2017 Jan]Promotion Counting 离散化+树状数组

    原文地址:http://www.cnblogs.com/GXZlegend/p/6832263.html 题目描述 The cows have once again tried to form a s ...

  7. [BZOJ4756][Usaco2017 Jan]Promotion Counting 树状数组

    4756: [Usaco2017 Jan]Promotion Counting Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 305  Solved: ...

  8. 线段树合并 || 树状数组 || 离散化 || BZOJ 4756: [Usaco2017 Jan]Promotion Counting || Luogu P3605 [USACO17JAN]Promotion Counting晋升者计数

    题面:P3605 [USACO17JAN]Promotion Counting晋升者计数 题解:这是一道万能题,树状数组 || 主席树 || 线段树合并 || 莫队套分块 || 线段树 都可以写..记 ...

  9. 【dsu || 线段树合并】bzoj4756: [Usaco2017 Jan]Promotion Counting

    调半天原来是dsu写不熟 Description The cows have once again tried to form a startup company, failing to rememb ...

随机推荐

  1. Eclipse安装STS(Spring Tool Suite (STS) for Eclipse)插件

    转自:https://blog.csdn.net/zhen_6137/article/details/79383941

  2. shiro 框架

    惊天给大家总结一点shiro框架的小知识 Apache Shiro是一个强大且易用的Java安全框架,执行身份验证.授权.密码和会话管理.使用Shiro的易于理解的API,您可以快速.轻松地获得任何应 ...

  3. 在linux中运行main方法所在的java类(亲测有效!!!)

    本人是用SecureCRTPortable连接linux终端的.其他工具连接linux终端应该是一样的操作! 一.首先到移动到java工程所在的bin目录. 二.在bin目录下执行javac -cp ...

  4. ubuntu16.04设置电池充电阈值

    thinkpad在安装ubuntu16.04之后,设置充电阈值: 方法一: 使用双系统,在windows下使用联想的Lenovo setting center设置之后,在ubuntu之下也可以保持相同 ...

  5. MySQLReport

    简介: MySQLReport 一.安装 shell > yum -y install mysqlreport perl-DBD-MySQL 二.使用 shell > mysqlrepor ...

  6. MPP、SMP、NUMA概念介绍

    一.MPP,SMP,NUMA概念介绍 1.1.       MPP架构介绍 MPP (Massively Parallel Processing),大规模并行处理系统,这样的系统是由许多松耦合的处理单 ...

  7. MATLAB中 histogram 和 imhist 的区别

    matlab有两个生成直方图的库函数,分别是imhist和histogram,二者有何区别呢? 区别就是: imhist 官方help:imhist(I) calculates the histogr ...

  8. How to Pronounce UMBRELLA

    How to Pronounce UMBRELLA Share Tweet Share Tagged With: 3-Syllable When the weather is bad, you’ll ...

  9. 迷你MVVM框架 avalonjs 学习教程13、模板引用

    稍为复杂一点的网站都是多个前端工程师合作而成,因此分工是必需的.简单一点的分工就是一个人负责一个频道,某个页面是由一个人全部做的:但如果涉及到一个页面非常复杂,需要多个人同时动工呢?于是到模板的出场时 ...

  10. 将JDBC的resultSet映射到JavaBaen

    // 执行赋值后SQL,            rs=pstm.executeQuery();            //判断是否有返回结果,有下一行rs.next()方法为true          ...