洛谷 P4248: bzoj 3238: [AHOI2013]差异
题目传送门:洛谷 P4248。
题意简述:
定义两个字符串 \(S\) 和 \(T\) 的差异 \(\operatorname{diff}(S,T)\) 为这两个串的长度之和减去两倍的这两个串的最长公共前缀的长度。
给定一个字符串,定义从第 \(i\) 个字符开始的后缀为 \(Suf_i\)。
求 \(\sum_{1\le i<j\le n}\operatorname{diff}(Suf_i,Suf_j)\)。
题解:
化简式子,原式等于
\[\begin{align*}&\left(\sum_{1\le i<j\le n}i+j\right)-2\times\sum_{1\le i<j\le n}\operatorname{lcp}(Suf_i,Suf_j)\\=& \frac{n(n-1)(n+1)}{2}-2\times\sum_{1\le i<j\le n}\operatorname{lcp}(Suf_i,Suf_j)\end{align*}\]
所以只要求出后半部分即可。
建立字符串的后缀数组。
考虑 Height 数组的贡献:Height 数组中 [2, n] 内的每一个区间都给答案贡献区间最小值。
套路:每个区间的区间最小值之和,使用单调栈解决。
#include <cstdio>
#include <cstring> typedef long long LL;
const int MN = ; int N;
char str[MN]; int M;
int rk[MN], rk2[MN], SA[MN], SA2[MN];
int buk[MN], cnt;
int Height[MN]; void GetHeight() {
int k = ;
for (int i = ; i <= N; ++i) {
if (rk[i] == ) { k = Height[] = ; continue; }
if (k) --k;
int j = SA[rk[i] - ];
while (i + k <= N && j + k <= N && str[i + k] == str[j + k]) ++k;
Height[rk[i]] = k;
}
} void Rsort() {
for (int i = ; i <= M; ++i) buk[i] = ;
for (int i = ; i <= N; ++i) ++buk[rk[i]];
for (int i = ; i <= M; ++i) buk[i] += buk[i - ];
for (int i = N; i >= ; --i) SA[buk[rk[SA2[i]]]--] = SA2[i];
} void GetSA() {
M = ;
for (int i = ; i <= N; ++i) rk[i] = str[i] - 'a' + , SA2[i] = i;
Rsort();
for (int j = ; j < N; j <<= ) {
int P = ;
for (int i = N - j + ; i <= N; ++i) SA2[++P] = i;
for (int i = ; i <= N; ++i) if (SA[i] > j) SA2[++P] = SA[i] - j;
Rsort();
rk2[SA[]] = P = ;
for (int i = ; i <= N; ++i) {
if (rk[SA[i]] != rk[SA[i - ]] || rk[SA[i] + j] != rk[SA[i - ] + j]) ++P;
rk2[SA[i]] = P;
}
for (int i = ; i <= N; ++i) rk[i] = rk2[i];
M = P;
if (M == N) break;
}
GetHeight();
} int st[MN], t;
int L[MN], R[MN]; int main() {
scanf("%s", str + );
N = strlen(str + );
GetSA();
st[t = ] = ;
for (int i = ; i <= N; ++i) {
while (t && Height[st[t]] > Height[i]) R[st[t--]] = i;
L[i] = st[t];
st[++t] = i;
} while (t) R[st[t--]] = N + ;
LL Ans = (LL)(N - ) * N * (N + ) / ;
for (int i = ; i <= N; ++i)
Ans -= 2ll * (R[i] - i) * (i - L[i]) * Height[i];
printf("%lld\n", Ans);
return ;
}
洛谷 P4248: bzoj 3238: [AHOI2013]差异的更多相关文章
- 洛谷 P4248 / loj 2377 [AHOI2013] 差异 题解【后缀自动机】【树形DP】
可能是一个 SAM 常用技巧?感觉 SAM 的基础题好多啊.. 题目描述 给定一个长度为 \(n\) 的字符串 \(S\) ,令 \(T_i\) 表示它从第 \(i\) 个字符开始的后缀,求: \[ ...
- BZOJ 3238: [Ahoi2013]差异 [后缀数组 单调栈]
3238: [Ahoi2013]差异 Time Limit: 20 Sec Memory Limit: 512 MBSubmit: 2326 Solved: 1054[Submit][Status ...
- bzoj 3238 Ahoi2013 差异
3238: [Ahoi2013]差异 Time Limit: 20 Sec Memory Limit: 512 MBSubmit: 2357 Solved: 1067[Submit][Status ...
- BZOJ 3238: [Ahoi2013]差异 [后缀自动机]
3238: [Ahoi2013]差异 Time Limit: 20 Sec Memory Limit: 512 MBSubmit: 2512 Solved: 1140[Submit][Status ...
- bzoj 3238: [Ahoi2013]差异 -- 后缀数组
3238: [Ahoi2013]差异 Time Limit: 20 Sec Memory Limit: 512 MB Description Input 一行,一个字符串S Output 一行,一个 ...
- ●BZOJ 3238 [Ahoi2013]差异
题链: http://www.lydsy.com/JudgeOnline/problem.php?id=3238 题解: 后缀数组套路深. 问题转化为求出任意两个后缀的LCP之和 在计算贡献时,各种不 ...
- BZOJ 3238 [Ahoi2013]差异(后缀自动机)
[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=3238 [题目大意] 给出一个串,设T[i]表示从第i位开始的后缀, 求sum(len( ...
- BZOJ 3238: [Ahoi2013]差异 后缀自动机 树形dp
http://www.lydsy.com/JudgeOnline/problem.php?id=3238 就算是全局变量,也不要忘记,初始化(吐血). 长得一副lca样,没想到是个树形dp(小丫头还有 ...
- BZOJ 3238: [Ahoi2013]差异((单调栈+后缀数组)/(后缀树))
[传送门[(https://www.lydsy.com/JudgeOnline/problem.php?id=3238) 解题思路 首先原式可以把\(len\)那部分直接算出来,然后通过后缀数组求\( ...
随机推荐
- HUAS 2017暑假第六周比赛-题解
A.Parenthesis 括号匹配的问题有一种经典的做法. 将左括号看成1,右括号看成-1,做一遍前缀和sum. 括号序列是合法的当且仅当\(sum[n]=Min(sum[1],sum[2].... ...
- 更新ffmpeg
今天对公司线上的几台机器做了下ffmpeg的更新,没有什么技术含量,还是简单记录下,做个流水账~哈哈 软件包获取方式 官方网站:https://ffmpeg.org/download.htmlgith ...
- BZOJ5099 POI2018Pionek
假设确定了最终所得向量的方向,则应该选择所有在该方向上投影为正的向量.按极角序排序后这显然是一段连续区间.最终向量方向很难枚举,但对于某个向量,在其上投影为正的向量与其夹角范围是(-π/2,π/2), ...
- The Bells are Ringing UVALive - 4060(枚举求解)
输出整数N,使得 t1 <= N 统计有多少组t1,t2,t3,满足:1<t1<t2<t3<=1000000,t3-t1<=25,且t1,t2,t3的最小公倍数 ...
- P4051 [JSOI2007]字符加密 解题报告
P4051 [JSOI2007]字符加密 题目描述 喜欢钻研问题的JS 同学,最近又迷上了对加密方法的思考.一天,他突然想出了一种他认为是终极的加密办法:把需要加密的信息排成一圈,显然,它们有很多种不 ...
- bzoj 2453 : 维护队列 带修莫队
2453: 维护队列 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 952 Solved: 432[Submit][Status][Discuss] ...
- 团体程序设计天梯赛 L1-049. 天梯赛座位分配(测试数据+不同方法)
Data: /*33 2 1#11 4 7 10 13 16 19 22 25 2831 33 35 37 39 41 43 45 47 4951 53 55 57 59 61 63 65 67 69 ...
- 星号三角形 I
N = int(eval(input())) for row in range(1,N+1): if row%2 != 0: a = '*'*row print ('{}'.format(a.cent ...
- java基础-BigDecimal类常用方法介绍
java基础-BigDecimal类常用方法介绍 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.BigDecimal类概述 我们知道浮点数的计算结果是未知的.原因是计算机二进制 ...
- nova-api中ExtensionManager的构造
源码版本:H版 nova/api/openstack/__init__.py APIRouter类: def __init__(self, ext_mgr=None, init_only=None): ...