福利 => 每天都推送

欢迎大家,关注微信扫码并加入我的4个微信公众号:   大数据躺过的坑      Java从入门到架构师      人工智能躺过的坑         Java全栈大联盟
 
     每天都有大量的学习视频资料和精彩技术文章推送... 人生不易,唯有努力。
 
     百家号 :九月哥快讯               快手号:  jiuyuege
 
 
 
 
 
 

  为什么,我要在这里提出要用Ultimate版本。

IDEA Community(社区版)再谈之无奈之下还是去安装旗舰版

IntelliJ IDEA的黑白色背景切换(Ultimate和Community版本皆通用)

使用 IntelliJ IDEA 导入 Spark 最新源码及编译 Spark 源代码

IDEA里如何多种方式打jar包,然后上传到集群

IntelliJ IDEA(Community版本)的下载、安装和WordCount的初步使用(本地模式和集群模式)

IntelliJ IDEA(Ultimate版本)的下载、安装和WordCount的初步使用(本地模式和集群模式)

基于Intellij IDEA搭建Spark开发环境搭——参考文档

    参考文档http://spark.apache.org/docs/latest/programming-guide.html

操作步骤

  a)创建maven 项目

  b)引入依赖(Spark 依赖、打包插件等等)

基于Intellij IDEA搭建Spark开发环境—maven vs sbt

  a)哪个熟悉用哪个

  b)Maven也可以构建scala项目

基于Intellij IDEA搭建Spark开发环境搭—maven构建scala项目

  参考文档http://docs.scala-lang.org/tutorials/scala-with-maven.html

操作步骤

  a) 用maven构建scala项目(基于net.alchim31.maven:scala-archetype-simple)

GroupId:zhouls.bigdata
ArtifactId:mySpark
Version:1.0-SNAPSHOT

mySpark

E:\Code\IntelliJIDEAUltimateVersionCode\mySpark

  因为,我本地的scala版本是2.10.5

  选中,delete就好。

  其实,这个就是windows里的cmd终端,只是IDEA它把这个cmd终端集成到这了。

mvn clean package

  这只是做个测试而已。

b)pom.xml引入依赖(spark依赖、打包插件等等)

  注意:scala与java版本的兼容性

<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/maven-v4_0_0.xsd">
<modelVersion>4.0.</modelVersion>
<groupId>zhouls.bigdata</groupId>
<artifactId>mySpark</artifactId>
<version>1.0-SNAPSHOT</version>
<name>mySpark</name>
<inceptionYear></inceptionYear>
<properties>
<scala.version>2.10.</scala.version>
<spark.version>1.6.</spark.version>
</properties> <repositories>
<repository>
<id>scala-tools.org</id>
<name>Scala-Tools Maven2 Repository</name>
<url>http://scala-tools.org/repo-releases</url>
</repository>
</repositories> <pluginRepositories>
<pluginRepository>
<id>scala-tools.org</id>
<name>Scala-Tools Maven2 Repository</name>
<url>http://scala-tools.org/repo-releases</url>
</pluginRepository>
</pluginRepositories> <dependencies>
<dependency>
<groupId>org.scala-lang</groupId>
<artifactId>scala-library</artifactId>
<version>${scala.version}</version>
</dependency>
<dependency>
<groupId>junit</groupId>
<artifactId>junit</artifactId>
<version>4.4</version>
<scope>test</scope>
</dependency>
<dependency>
<groupId>org.specs</groupId>
<artifactId>specs</artifactId>
<version>1.2.</version>
<scope>test</scope>
</dependency>
<!--spark -->
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-core_2.</artifactId>
<version>${spark.version}</version>
<scope>provided</scope>
</dependency>
</dependencies> <build>
<!--
<sourceDirectory>src/main/scala</sourceDirectory>
<testSourceDirectory>src/test/scala</testSourceDirectory>
-->
<plugins>
<plugin>
<groupId>org.scala-tools</groupId>
<artifactId>maven-scala-plugin</artifactId>
<executions>
<execution>
<goals>
<goal>compile</goal>
<goal>testCompile</goal>
</goals>
</execution>
</executions>
<configuration>
<scalaVersion>${scala.version}</scalaVersion>
<args>
<arg>-target:jvm-1.5</arg>
</args>
</configuration>
</plugin>
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-eclipse-plugin</artifactId>
<configuration>
<downloadSources>true</downloadSources>
<buildcommands>
<buildcommand>ch.epfl.lamp.sdt.core.scalabuilder</buildcommand>
</buildcommands>
<additionalProjectnatures>
<projectnature>ch.epfl.lamp.sdt.core.scalanature</projectnature>
</additionalProjectnatures>
<classpathContainers>
<classpathContainer>org.eclipse.jdt.launching.JRE_CONTAINER</classpathContainer>
<classpathContainer>ch.epfl.lamp.sdt.launching.SCALA_CONTAINER</classpathContainer>
</classpathContainers>
</configuration>
</plugin>
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-shade-plugin</artifactId>
<version>2.4.</version>
<executions>
<!-- Run shade goal on package phase -->
<execution>
<phase>package</phase>
<goals>
<goal>shade</goal>
</goals>
<configuration>
<transformers>
<!-- add Main-Class to manifest file -->
<transformer
implementation="org.apache.maven.plugins.shade.resource.ManifestResourceTransformer">
<!--<mainClass>com.dajiang.MyDriver</mainClass>-->
</transformer>
</transformers>
<createDependencyReducedPom>false</createDependencyReducedPom>
</configuration>
</execution>
</executions>
</plugin>
</plugins>
</build>
<reporting>
<plugins>
<plugin>
<groupId>org.scala-tools</groupId>
<artifactId>maven-scala-plugin</artifactId>
<configuration>
<scalaVersion>${scala.version}</scalaVersion>
</configuration>
</plugin>
</plugins>
</reporting>
</project>

   为了养成,开发规范。

  默认,创建是没有生效的,比如做如下,才能生效。

  同样,对于下面的单元测试,也是一样

  默认,也是没有生效的。

  必须做如下的动作,才能生效。

  

开发第一个Spark程序

scala入门-01-IDEA安装scala插件

  a) 第一个Scala版本的spark程序

package zhouls.bigdata
import org.apache.spark.{SparkConf, SparkContext} /**
* Created by zhouls on 2016-6-19.
*/
object MyScalaWordCount {
def main(args: Array[String]): Unit = {
//参数检查
if (args.length < 2) {
System.err.println("Usage: MyScalaWordCout <input> <output> ")
System.exit(1)
}
//获取参数
val input=args(0)
val output=args(1)
//创建scala版本的SparkContext
val conf=new SparkConf().setAppName("MyScalaWordCout ")
val sc=new SparkContext(conf)
//读取数据
val lines=sc.textFile(input)
//进行相关计算
val resultRdd=lines.flatMap(_.split(" ")).map((_,1)).reduceByKey(_+_)
//保存结果
resultRdd.saveAsTextFile(output)
sc.stop()
}
}

  b) 第一个Java版本的spark程序

package zhouls.bigdata;

import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaPairRDD;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.api.java.function.FlatMapFunction;
import org.apache.spark.api.java.function.Function2;
import org.apache.spark.api.java.function.PairFunction;
import scala.Tuple2; import java.util.Arrays; /**
* Created by zhouls on 2016-6-19.
*/
public class MyJavaWordCount {
public static void main(String[] args) {
//参数检查
if(args.length<2){
System.err.println("Usage: MyJavaWordCount <input> <output> ");
System.exit(1);
}
//获取参数
String input=args[0];
String output=args[1]; //创建java版本的SparkContext
SparkConf conf=new SparkConf().setAppName("MyJavaWordCount");
JavaSparkContext sc=new JavaSparkContext(conf);
//读取数据
JavaRDD inputRdd=sc.textFile(input);
//进行相关计算
JavaRDD words=inputRdd.flatMap(new FlatMapFunction() {
public Iterable call(String line) throws Exception {
return Arrays.asList(line.split(" "));
}
}); JavaPairRDD result=words.mapToPair(new PairFunction() {
public Tuple2 call(String word) throws Exception {
return new Tuple2(word,1);
}
}).reduceByKey(new Function2() {
public Integer call(Integer x, Integer y) throws Exception {
return x+y;
}
});
//保存结果
result.saveAsTextFile(output);
//关闭sc
sc.stop();
}
}

 或者

package zhouls.bigdata;

/**
*Created by zhouls on 2016-6-19.
*/ import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaPairRDD;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.api.java.function.FlatMapFunction;
import org.apache.spark.api.java.function.Function2;
import org.apache.spark.api.java.function.PairFunction;
import scala.Tuple2; import java.util.Arrays;
import java.util.List;
import java.util.regex.Pattern; public final class MyJavaWordCount {
private static final Pattern SPACE = Pattern.compile(" "); public static void main(String[] args) throws Exception { if (args.length < 1) {
System.err.println("Usage: MyJavaWordCount <file>");
System.exit(1);
} SparkConf sparkConf = new SparkConf().setAppName("MyJavaWordCount ");
JavaSparkContext ctx = new JavaSparkContext(sparkConf);
JavaRDD<String> lines = ctx.textFile(args[0], 1); JavaRDD<String> words = lines.flatMap(new FlatMapFunction<String, String>() {
public Iterable<String> call(String s) {
return Arrays.asList(SPACE.split(s));
}
}); JavaPairRDD<String, Integer> ones = words.mapToPair(new PairFunction<String, String, Integer>() {
public Tuple2<String, Integer> call(String s) {
return new Tuple2<String, Integer>(s, 1);
}
}); JavaPairRDD<String, Integer> counts = ones.reduceByKey(new Function2<Integer, Integer, Integer>() {
public Integer call(Integer i1, Integer i2) {
return i1 + i2;
}
}); List<Tuple2<String, Integer>> output = counts.collect();
for (Tuple2<?, ?> tuple : output) {
System.out.println(tuple._1() + ": " + tuple._2());
}
ctx.stop();
}
}

运行自己开发第一个Spark程序

  Spark maven 项目打包

IDEA里如何多种方式打jar包,然后上传到集群

  推荐下面这种方式

  1、先切换到此工程路径下

  默认,会到E:\Code\IntelliJIDEAUltimateVersionCode\mySpark>

mvn clean package
mvn package
 

  为了,更好的学习,其实,我们可以将它拷贝到桌面,去看看,是否真正打包进入。因为这里,是需要包括MyJavaWordCount.java和MyScalaWordCout.scala

准备好数据

[spark@sparksinglenode wordcount]$ pwd
/home/spark/testspark/inputData/wordcount
[spark@sparksinglenode wordcount]$ ll
total 4
-rw-rw-r-- 1 spark spark 92 Mar 24 18:45 wc.txt
[spark@sparksinglenode wordcount]$ cat wc.txt
hadoop spark
storm zookeeper
scala java
hive hbase
mapreduce hive
hadoop hbase
spark hadoop
[spark@sparksinglenode wordcount]$

上传好刚之前打好的jar包

提交Spark 集群运行

  a) 提交Scala版本的Wordcount

  到$SPARK_HOME安装目录下,去执行如下命令。

[spark@sparksinglenode spark-1.6.1-bin-hadoop2.6]$ $HADOOP_HOME/bin/hadoop fs -mkdir -p hdfs://sparksinglenode:9000/testspark/inputData/wordcount

[spark@sparksinglenode spark-1.6.1-bin-hadoop2.6]$ $HADOOP_HOME/bin/hadoop fs -copyFromLocal /home/spark/testspark/inputData/wordcount/wc.txt  hdfs://sparksinglenode:9000/testspark/inputData/wordcount/

[spark@sparksinglenode spark-1.6.1-bin-hadoop2.6]$ bin/spark-submit --class zhouls.bigdata.MyScalaWordCount /home/spark/testspark/mySpark-1.0-SNAPSHOT.jar hdfs://sparksinglenode:9000/testspark/inputData/wordcount/wc.txt hdfs://sparksinglenode:9000/testspark/outData/MyScalaWordCount

  注意,以上,是输入路径和输出都要在集群里。因为我这里的程序打包里,制定是在集群里(即hdfs)。所以只能用这种方法。

  成功!

[spark@sparksinglenode spark-1.6.1-bin-hadoop2.6]$ $HADOOP_HOME/bin/hadoop fs -cat hdfs://sparksinglenode:9000/testspark/outData/MyScalaWordCount/part-*
17/03/27 20:12:55 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
(storm zookeeper,1)
(hadoop spark,1)
(spark hadoop,1)
(mapreduce hive,1)
(scala java,1)
(hive hbase,1)
(hadoop hbase,1)
[spark@sparksinglenode spark-1.6.1-bin-hadoop2.6]$

  注意:若想要在本地(即windows里或linux里能运行的话。则只需在程序代码里。注明是local就好,这个很简单。不多赘述,再打包。再运行就可以了。

[spark@sparksinglenode spark-1.6.1-bin-hadoop2.6]$ bin/spark-submit --class zhouls.bigdata.MyScalaWordCount /home/spark/testspark/mySpark-1.0-SNAPSHOT.jar /home/spark/testspark/inputData/wordcount/wc.txt /home/spark/testspark/outData/MyScalaWordCount

  b) 提交Java版本的Wordcount

[spark@sparksinglenode spark-1.6.1-bin-hadoop2.6]$ bin/spark-submit --class zhouls.bigdata.MyJavaWordCount /home/spark/testspark/mySpark-1.0-SNAPSHOT.jar hdfs://sparksinglenode:9000/testspark/inputData/wordcount/wc.txt hdfs://sparksinglenode:9000/testspark/outData/MyJavaWordCount

storm    zookeeper: 1
hadoop spark: 1
spark hadoop: 1
mapreduce hive: 1
scala java: 1
hive hbase: 1
hadoop hbase: 1

 注意:若想要在本地(即windows里或linux里能运行的话。则只需在程序代码里。注明是local就好,这个很简单。不多赘述,再打包。再运行就可以了。

bin/spark-submit --class com.zhouls.test.MyJavaWordCount /home/spark/testspark/mySpark-1.0.SNAPSHOT.jar /home/spark/testspark/inputData/wordcount/wc.txt /home/spark/testspark/outData/MyJavaWordCount

  成功!

  关于对pom.xml的进一步深入,见

对于maven创建spark项目的pom.xml配置文件(图文详解)

  推荐博客

Scala IDEA for Eclipse里用maven来创建scala和java项目代码环境(图文详解)

用maven来创建scala和java项目代码环境(图文详解)(Intellij IDEA(Ultimate版本)、Intellij IDEA(Community版本)和Scala IDEA for Eclipse皆适用)(博主推荐)

欢迎大家,加入我的4个微信公众号:    大数据躺过的坑     Java从入门到架构师    人工智能躺过的坑     Java全栈大联盟    
 
 
 

同时,大家可以关注我的个人博客

   http://www.cnblogs.com/zlslch/   和     http://www.cnblogs.com/lchzls/      http://www.cnblogs.com/sunnyDream/   

   详情请见:http://www.cnblogs.com/zlslch/p/7473861.html

  人生苦短,我愿分享。本公众号将秉持活到老学到老学习无休止的交流分享开源精神,汇聚于互联网和个人学习工作的精华干货知识,一切来于互联网,反馈回互联网。
  目前研究领域:大数据、机器学习、深度学习、人工智能、数据挖掘、数据分析。 语言涉及:Java、Scala、Python、Shell、Linux等 。同时还涉及平常所使用的手机、电脑和互联网上的使用技巧、问题和实用软件。 只要你一直关注和呆在群里,每天必须有收获

对应本平台的讨论和答疑QQ群:大数据和人工智能躺过的坑(总群)(161156071) 

 

打开百度App,扫码,精彩文章每天更新!欢迎关注我的百家号: 九月哥快讯

Spark编程环境搭建(基于Intellij IDEA的Ultimate版本)(包含Java和Scala版的WordCount)(博主强烈推荐)的更多相关文章

  1. IntelliJ IDEA(Ultimate版本)的下载、安装和WordCount的初步使用(本地模式和集群模式)

    不多说,直接上干货! IntelliJ IDEA号称当前Java开发效率最高的IDE工具.IntelliJ IDEA有两个版本:社区版(Community)和旗舰版(Ultimate).社区版时免费的 ...

  2. Ubuntu14.04下Ambari安装搭建部署大数据集群(图文分五大步详解)(博主强烈推荐)

    不多说,直接上干货! 写在前面的话 (1) 最近一段时间,因担任我团队实验室的大数据环境集群真实物理机器工作,至此,本人秉持负责.认真和细心的态度,先分别在虚拟机上模拟搭建ambari(基于CentO ...

  3. Ubuntu14.04下Cloudera安装搭建部署大数据集群(图文分五大步详解)(博主强烈推荐)(在线或离线)

    第一步: Cloudera Manager安装之Cloudera Manager安装前准备(Ubuntu14.04)(一) 第二步: Cloudera Manager安装之时间服务器和时间客户端(Ub ...

  4. Spark编程环境搭建及WordCount实例

    基于Intellij IDEA搭建Spark开发环境搭建 基于Intellij IDEA搭建Spark开发环境搭——参考文档 ● 参考文档http://spark.apache.org/docs/la ...

  5. CentOS6.5下Ambari安装搭建部署大数据集群(图文分五大步详解)(博主强烈推荐)

    第一步: Ambari安装之Ambari安装前准备(CentOS6.5)(一) 第二步: Ambari安装之部署本地库(镜像服务器)(二) 第三步: Ambari安装之安装并配置Ambari-serv ...

  6. CentOS6.5下Cloudera安装搭建部署大数据集群(图文分五大步详解)(博主强烈推荐)

     不多说,直接上干货! 第一步: Cloudera Manager安装之Cloudera Manager安装前准备(CentOS6.5)(一) 第二步: Cloudera Manager安装之时间服务 ...

  7. 用maven来创建scala和java项目代码环境(图文详解)(Intellij IDEA(Ultimate版本)、Intellij IDEA(Community版本)和Scala IDEA for Eclipse皆适用)(博主推荐)

    不多说,直接上干货! 为什么要写这篇博客? 首先,对于spark项目,强烈建议搭建,用Intellij IDEA(Ultimate版本),如果你还有另所爱好尝试Scala IDEA for Eclip ...

  8. 使用 IntelliJ IDEA 导入 Spark 最新源码及编译 Spark 源代码(博主强烈推荐)

    前言   其实啊,无论你是初学者还是具备了有一定spark编程经验,都需要对spark源码足够重视起来. 本人,肺腑之己见,想要成为大数据的大牛和顶尖专家,多结合源码和操练编程. 准备工作 1.sca ...

  9. IntelliJ IDEA(Community版本)的下载、安装和WordCount的初步使用(本地模式和集群模式)

    不多说,直接上干货! 对于初学者来说,建议你先玩玩这个免费的社区版,但是,一段时间,还是去玩专业版吧,这个很简单哈,学聪明点,去搞到途径激活!可以看我的博客. 包括: IntelliJ IDEA(Co ...

随机推荐

  1. 关于Python Package下的Module import方式[转]

    2012年有一个目标我没有达成,那就是深入学习和使用Python语言.这个目标被其他学习任务和工作无情的抢占了,当然最主要的原因还是我重视不够^_^. 近期恰逢有一些Python工程的开发工作要做,就 ...

  2. HDU1078 FatMouse and Cheese(DFS+DP) 2016-07-24 14:05 70人阅读 评论(0) 收藏

    FatMouse and Cheese Problem Description FatMouse has stored some cheese in a city. The city can be c ...

  3. poj2462

    看八戒在做这个题,我也做了做.. 坑很多,还是要注意细节.不得不吐槽,难道又到了计算几何只能套模板否则就一串WA的情况了么! 要不是八戒做出来了,这题我估计我也就扔到这里了..哥不服啊~所以得做出来! ...

  4. Alpha阶段项目复审(小小大佬带飞队)

    Alpha阶段项目复审 小组的名字 优点 缺点,bug报告(至少140字) 最终名次(无并列) 只会嘤嘤嘤队 题材比较新颖!游戏和记单词的结合  有浏览器不兼容问题 5 GG队 样式新颖,自动导入好评 ...

  5. plsql高版本无法设置Fixedsys字体解决办法(win7&winXP适用)

    http://hi.baidu.com/crsky2008/item/c174c9fb52577919e3e3bd6b 设置如下:Tools->Preferences->Oracle-&g ...

  6. Sql Server 2008 压缩数据库日志文件

    第一步:将数据库设置为简单模式 选中数据库点右键->属性: 第二步:收缩数日志文件 1, 2,   第三步:将恢复模式改回为完整模式     如果你觉得用UI界面麻烦,那你就用SQL语句吧   ...

  7. Spring Boot 2 实践记录之 使用 ConfigurationProperties 注解将配置属性匹配至配置类的属性

    在 Spring Boot 2 实践记录之 条件装配 一文中,曾经使用 Condition 类的 ConditionContext 参数获取了配置文件中的配置属性.但那是因为 Spring 提供了将上 ...

  8. asp.net excel导出功能

    以下是我在项目开发中所做的关于Excel导出功能,不足之处还望大家指正,相互学习 protected void btn_Export_Click(object sender, EventArgs e) ...

  9. asp.net core 的用户注册功能——Identity上手

    首先请using这个类库. using Microsoft.AspNetCore.Identity; 这个类库老牛逼了,首先是包含了一个IdentityUser类.我们可以自己写一个User类继承Id ...

  10. netcore问题总结

    1. webclient在在netcore异步文件下载的时候,下载进度为空,只有最后下载完了,进度才会是100%,但是在netframework中就没有这个问题,异步文件下载进度会正常提醒. 2. n ...