科学经得起实践检验-python3.6通过决策树实战精准准确预测今日大盘走势(含代码)

春有百花秋有月,夏有凉风冬有雪;

若无闲事挂心头,便是人间好时节。

  

  --宋.无门慧开

不废话了,以下训练模型数据,采用本人发明的极致800实时指数近期的一些实际数据,

预测采用今日的真实数据

#coding=utf-8
__author__ = 'huangzhi'

import math
import operator def calcShannonEnt(dataset):
numEntries = len(dataset)
labelCounts = {}
for featVec in dataset:
currentLabel = featVec[-1]
if currentLabel not in labelCounts.keys():
labelCounts[currentLabel] = 0
labelCounts[currentLabel] += 1 shannonEnt = 0.0
for key in labelCounts:
prob = float(labelCounts[key]) / numEntries
shannonEnt -= prob * math.log(prob, 2)
return shannonEnt def CreateDataSet():
# dataset = [[1, 1, 'yes'],
# [1, 1, 'yes'],
# [1, 0, 'no'],
# [0, 1, 'no'],
# [0, 1, 'no']]

dataset = [[3, 4, 100, 85, 4, 6, 110, 120, 4, 6, 151, 122, 8, 12, 110, 185, ''],
[5, 7, 88, 85, 6, 8, 100, 130, 6, 9, 131, 132, 8, 14, 100, 195, ''],
[6, 2, 60, 20, 9, 3, 80, 22, 16, 4, 131, 32, 33, 5, 160, 45, ''],
[3, 4, 100, 105, 4, 6, 110, 120, 4, 6, 151, 122, 8, 12, 110, 185, ''],
[5, 3, 50, 30, 8, 4, 70, 28, 12, 6, 101, 42, 28, 7, 120, 35, ''],
[2, 6, 60, 95, 4, 8, 90, 130, 6, 11, 101, 142, 9, 15, 99, 145, ''],
[5, 3, 70, 30, 8, 4, 90, 32, 22, 6, 141, 42, 43, 8, 150, 65, ''],
[2, 8, 30, 60, 9, 8, 80, 90, 9, 20, 140, 160, 12, 32, 101, 205, '']]
labels = ['l1', 'l2', 'l3', 'l4', 'l5', 'l6', 'l7', 'l8', 'l9', 'l11', 'l12', 'l13', 'l14', 'l15', 'l16', 'l17']
return dataset, labels def splitDataSet(dataSet, axis, value):
retDataSet = []
for featVec in dataSet:
if featVec[axis] == value:
reducedFeatVec = featVec[:axis]
reducedFeatVec.extend(featVec[axis + 1:])
retDataSet.append(reducedFeatVec) return retDataSet def chooseBestFeatureToSplit(dataSet):
numberFeatures = len(dataSet[0]) - 1
baseEntropy = calcShannonEnt(dataSet)
bestInfoGain = 0.0;
bestFeature = -1;
for i in range(numberFeatures):
featList = [example[i] for example in dataSet]
# print(featList)
uniqueVals = set(featList)
# print(uniqueVals)
newEntropy = 0.0
for value in uniqueVals:
subDataSet = splitDataSet(dataSet, i, value)
prob = len(subDataSet) / float(len(dataSet))
newEntropy += prob * calcShannonEnt(subDataSet)
infoGain = baseEntropy - newEntropy
if (infoGain > bestInfoGain):
bestInfoGain = infoGain
bestFeature = i
return bestFeature def majorityCnt(classList):
classCount = {}
for vote in classList:
if vote not in classCount.keys():
classCount[vote] = 0
classCount[vote] = 1
sortedClassCount = sorted(classCount.iteritems(), key=operator.itemgetter(1), reverse=True)
return sortedClassCount[0][0] def createTree(dataSet, inputlabels):
labels = inputlabels[:]
classList = [example[-1] for example in dataSet]
if classList.count(classList[0]) == len(classList):
return classList[0]
if len(dataSet[0]) == 1:
return majorityCnt(classList)
bestFeat = chooseBestFeatureToSplit(dataSet)
bestFeatLabel = labels[bestFeat]
myTree = {bestFeatLabel: {}}
del (labels[bestFeat])
featValues = [example[bestFeat] for example in dataSet]
uniqueVals = set(featValues)
for value in uniqueVals:
subLabels = labels[:]
myTree[bestFeatLabel][value] = createTree(splitDataSet(dataSet, bestFeat, value), subLabels)
return myTree def classify(inputTree, featLabels, testVec):
firstStr = list(inputTree.keys())[0]
secondDict = inputTree[firstStr]
featIndex = featLabels.index(firstStr)
for key in secondDict.keys():
if testVec[featIndex] == key:
if type(secondDict[key]).__name__ == 'dict':
classLabel = classify(secondDict[key], featLabels, testVec)
else:
classLabel = secondDict[key]
return classLabel myDat, labels = CreateDataSet()
# print(calcShannonEnt(myDat))

# print(splitDataSet(myDat, 1, 1))

# print(chooseBestFeatureToSplit(myDat))

myTree = createTree(myDat, labels) #通过早上9:41分的实际数据进行预测
print(classify(myTree, labels, [1, 6, 156, 169, 1, 6, 156, 169, 1, 6, 156, 169, 1, 6, 156, 169]))
#通过早上10:41分的实际数据进行预测
print(classify(myTree, labels, [1, 6, 156, 169, 4, 9, 129, 263, 4, 9, 129, 263, 4, 9, 129, 263]))
#通过下午13:41分的实际数据进行预测
print(classify(myTree, labels, [1, 6, 156, 169, 4, 9, 129, 263, 5, 12, 123, 306, 5, 12, 123, 306]))
#通过下午14:41分的实际数据进行预测
print(classify(myTree, labels, [1, 6, 156, 169, 4, 9, 129, 263, 5, 12, 123, 306, 6, 13, 99, 397]))


运行结果如下:
D:\Programs\Python\Python36-64\python.exe D:/pyfenlei/决策树/jcs4.py



科学经得起实践检验-python3.6通过决策树实战精准准确预测今日大盘走势(含代码)的更多相关文章

  1. 通俗地说决策树算法(三)sklearn决策树实战

    前情提要 通俗地说决策树算法(一)基础概念介绍 通俗地说决策树算法(二)实例解析 上面两篇介绍了那么多决策树的知识,现在也是时候来实践一下了.Python有一个著名的机器学习框架,叫sklearn.我 ...

  2. 崔庆才Python3网络爬虫开发实战电子版书籍分享

    资料下载地址: 链接:https://pan.baidu.com/s/1WV-_XHZvYIedsC1GJ1hOtw 提取码:4o94 <崔庆才Python3网络爬虫开发实战>高清中文版P ...

  3. python3.4学习笔记(二十五) Python 调用mysql redis实例代码

    python3.4学习笔记(二十五) Python 调用mysql redis实例代码 #coding: utf-8 __author__ = 'zdz8207' #python2.7 import ...

  4. 《Python3 网络爬虫开发实战》开发环境配置过程中踩过的坑

    <Python3 网络爬虫开发实战>学习资料:https://www.cnblogs.com/waiwai14/p/11698175.html 如何从墙内下载Android Studio: ...

  5. 《Python3 网络爬虫开发实战》学习资料

    <Python3 网络爬虫开发实战> 学习资料 百度网盘:https://pan.baidu.com/s/1PisddjC9e60TXlCFMgVjrQ

  6. Python3连接MySQL数据库实战

    Python3连接MySQL数据库实战 第三方库 :pymysql 数据库连接 def connect(): try: #建立数据库连接,从左至右参数依次为 # ip地址 我用的是云端数据库 如果为本 ...

  7. Python——决策树实战:california房价预测

    Python——决策树实战:california房价预测 编译环境:Anaconda.Jupyter Notebook 首先,导入模块: import pandas as pd import matp ...

  8. Python3网络爬虫开发实战PDF高清完整版免费下载|百度云盘

    百度云盘:Python3网络爬虫开发实战高清完整版免费下载 提取码:d03u 内容简介 本书介绍了如何利用Python 3开发网络爬虫,书中首先介绍了环境配置和基础知识,然后讨论了urllib.req ...

  9. 转:【Python3网络爬虫开发实战】 requests基本用法

    1. 准备工作 在开始之前,请确保已经正确安装好了requests库.如果没有安装,可以参考1.2.1节安装. 2. 实例引入 urllib库中的urlopen()方法实际上是以GET方式请求网页,而 ...

随机推荐

  1. UVaLive 3487 Duopoly (最小割)

    题意:有两个公司A和B在申请一些资源,现在给出两个公司所申请的内容,内容包括价钱和申请的资源 ,现在你做为官方,你只能拒绝一个申请或者接受一个申请,同一个资源不能两个公司都拥有,且申请的资源不能只给部 ...

  2. php PDO mysql

    php PDO写法连接mysql: $db=new PDO("mysql:host=localhost;dbname=sql","root","roo ...

  3. 简单的Java,Python,C,C++

    Java 语言 //package main //注意不要添加包名称,否则会报错. import java.io.*; import java.util.*; cin.hasNext(); cin.h ...

  4. (字典树模板)统计难题--hdu--1251

    链接: http://acm.hdu.edu.cn/showproblem.php?pid=1251 在自己敲了一遍后终于懂了,这不就用了链表的知识来建立了树,对!就是这样的,然后再查找 代码: #i ...

  5. Netty Nio启动全流程

    Netty Nio启动全流程 1. 各组件之间的关系 说明:EventLoopGroup类似线程池,EventLoop为单线程,每个EventLoop关联一个Nio Selector,用于注册Chan ...

  6. [转] ubuntu安装Sublime Text 3并使用SublimeClang插件

    原文地址:https://blog.csdn.net/cywosp/article/details/32721011 3. 安装强大的SublimeClang插件 SublimeClang是Subli ...

  7. node API assert

    1.assert.throws(block, [error], [message]): assert.throws( function(){ throw new Error('wrong'); }, ...

  8. 集合(六)LinkedHashMap

    上两篇文章讲了HashMap和HashMap在多线程下引发的问题,说明了,HashMap是一种非常常见.非常有用的集合,并且在多线程情况下使用不当会有线程安全问题. 大多数情况下,只要不涉及线程安全问 ...

  9. AndroidPn消息推送

    接着前面的工作,消息接收之后,要推送给不同的客户端.关于消息推送,网上有很多方式,http长连接,xmpp协议,还有一个谷歌的貌似叫C2DM的东西. 在此之前,用openfire做了一个小demo,例 ...

  10. 经典串匹配算法(KMP)解析

    一.问题重述 现有字符串S1,求S1中与字符串S2完全匹配的部分,例如: S1 = "ababaababc" S2 = "ababc" 那么得到匹配的结果是5( ...