题目链接

loj#2718. 「NOI2018」归程

题解

按照高度做克鲁斯卡尔重构树

那么对于询问倍增找到当前点能到达的高度最小可行点,该点的子树就是能到达的联通快,维护子树中到1节点的最短距离

spfa她死了...同步赛没写的说...

似乎前两题比去年简单些....连蒟蒻我都可做前两题的说

代码

#include<queue>
#include<cstdio>
#include<cstring>
#include<algorithm>
inline int read() {
int x = 0,f = 1;
char c = getchar();
while(c < '0' || c > '9')c = getchar();
while(c <= '9' && c >= '0')x = x * 10 + c - '0',c = getchar();
return x * f;
}
#define mp std::make_pair
#define pr std::pair<int,int>
int n,m;
const int maxn = 1000007;
struct node {
int u,v,a,l,next;
bool operator < (const node & A)const {
return a > A.a;
}
} edge[maxn << 1],e[maxn]; int num = 0,head[maxn],dis[maxn << 1];
inline void add_edge(int u,int v,int w) { edge[++ num].v = v;edge[num].l = w;edge[num].next = head[u];head[u] = num; }
std::priority_queue<pr> q;
void dijkstar() {
static bool vis[maxn];
memset(dis,0x3f,sizeof dis); memset(vis,0,sizeof vis);
dis[1] = 0;q.push(pr(0,1));
while(!q.empty()) {
int u = q.top().second;q.pop();
if(vis[u]) continue;
vis[u] = 1;
for(int i = head[u];i;i = edge[i].next) {
int v = edge[i].v;
if(dis[v] > dis[u] + edge[i].l) dis[v] = dis[u] + edge[i].l,q.push(mp(-dis[v],v));
}
}
}
int fa[maxn];
int find(int x) { if(fa[x] != x) fa[x] = find(fa[x]); return fa[x]; }
int tot = 0,dad[maxn << 1][20],mn[maxn << 1];
int lastans = 0;
int query(int x,int p) {
for(int i = 18;i >= 0;-- i) {
if(mn[dad[x][i]] > p) x = dad[x][i];
}
return dis[x];
}
void solve() {
int Q = read(),k = read(),S = read(),v,p;
if(k) while(Q --) {
v = (read() + k * lastans - 1) % n + 1;
p = (read() + k * lastans ) % (S + 1);
printf("%d\n",lastans = query(v,p)); } else while(Q --) {
v = read(),p = read();
printf("%d\n",query(v,p));
}
}
void init() {
n = read(),m = read();
//int cnt = 0;
for(int u,v,a,l,i = 1;i <= m;++ i) {
u = read(),v = read(),l = read(),a = read();
e[i].u = u,e[i].v = v,e[i].a = a;
add_edge(u,v,l); add_edge(v,u,l);
}
dijkstar();
for(int i = 1;i <= n;++ i) fa[i] = i;
tot = n;
std::sort(e + 1,e + m + 1);
int k = 1;
for(int fx,fy,i = 1;i <= m;++ i) {
int x = e[i].u,y = e[i].v,h = e[i].a;
if((fx = find(x)) == (fy = find(y))) continue;
fa[fx] = fa[fy] = dad[fx][0] = dad[fy][0] = ++ tot; fa[tot] = dad[tot][0] = tot;
mn[tot] = e[i].a; dis[tot] = std::min(dis[fx],dis[fy]);
if(++ k == n)break;
}
/*for(int i = 1;i <= tot;++ i)
for(int j = 0;dad[i][j];++ j)
dad[i][j + 1] = dad[dad[i][j]][j],mn[i][j + 1] = std::min(mn[i][j],mn[dad[i][j]][j]);
*/
for(int i = 1;i <= 18;++ i)
for(int x = 1;x <= tot;++ x)dad[x][i] = dad[dad[x][i - 1]][i - 1];
solve();
}
int main() {
freopen("return.in","r",stdin); freopen("return.out","w",stdout);
int t = read();
while(t --) {
memset(head,0,sizeof head),num = 0; lastans = 0;
init();
}
return 0;
}

loj#2718. 「NOI2018」归程的更多相关文章

  1. LOJ #2718. 「NOI2018」归程 Dijkstra+可持久化并查集

    把 $Noi2018$ day1t1 想出来还是挺开心的,虽然是一道水题~ 预处理出来 1 号点到其它点的最短路,然后预处理边权从大到小排序后加入前 $i$ 个边的并查集. 这个并查集用可持久化线段树 ...

  2. LOJ #2718. 「NOI2018」归程(Dijkstra + Kruskal重构树 + 倍增)

    题意 给你一个无向图,其中每条边有两个值 \(l, a\) 代表一条边的长度和海拔. 其中有 \(q\) 次询问(强制在线),每次询问给你两个参数 \(v, p\) ,表示在 \(v\) 出发,能开车 ...

  3. 洛谷 4768 LOJ 2718「NOI2018」归程

    [题解] 本题有多种做法,例如可持久化并查集.kruskal重构树等. kruskal重构树的做法是这样的:先把边按照海拔h从大到小的顺序排序,然后跑kruskal建立海拔的最大生成树,顺便建krus ...

  4. #2718. 「NOI2018」归程 kruskal重构树

    链接 https://loj.ac/problem/2718 思路 我们希望x所在的连通块尽量的大,而且尽量走高处 离线的话可以询问排序,kruskal过程中更新答案 在线就要用kruskal重构树 ...

  5. 「NOI2018」归程

    「NOI2018」归程 题目描述 本题的故事发生在魔力之都,在这里我们将为你介绍一些必要的设定. 魔力之都可以抽象成一个 >\(1\) 个节点. \(m\) 条边的无向连通图(节点的编号从 \( ...

  6. LOJ #2721. 「NOI2018」屠龙勇士(set + exgcd)

    题意 LOJ #2721. 「NOI2018」屠龙勇士 题解 首先假设每条龙都可以打死,每次拿到的剑攻击力为 \(ATK\) . 这个需要支持每次插入一个数,查找比一个 \(\le\) 数最大的数(或 ...

  7. loj#2721. 「NOI2018」屠龙勇士

    题目链接 loj#2721. 「NOI2018」屠龙勇士 题解 首先可以列出线性方程组 方程组转化为在模p意义下的同余方程 因为不保证pp 互素,考虑扩展中国剩余定理合并 方程组是带系数的,我们要做的 ...

  8. Loj #2719. 「NOI2018」冒泡排序

    Loj #2719. 「NOI2018」冒泡排序 题目描述 最近,小 S 对冒泡排序产生了浓厚的兴趣.为了问题简单,小 S 只研究对 *\(1\) 到 \(n\) 的排列*的冒泡排序. 下面是对冒泡排 ...

  9. loj#2720. 「NOI2018」你的名字

    链接大合集: loj uoj luogu bzoj 单纯地纪念一下写的第一份5K代码.../躺尸 因为ZJOI都不会所以只好写NOI的题了... 总之字符串题肯定一上来就拼个大字符串跑后缀数组啦! ( ...

随机推荐

  1. 兴人类TDD培训札记

    兴人类TDD培训札记 恰同学少年,风华正茂:书生意气,挥斥方遒 -- <沁园春 长沙> 幸之 前不久,非常幸运地全程参与了公司与南京5所知名高校合作的"兴人类TDD培训" ...

  2. c++ static静态

    在C++中,静态成员是属于整个类的而不是某个对象,静态成员变量只存储一份供所有对象共用.所以在所有对象中都可以共享它.使用静态成员变量实现多个对象之间的数据共享不会破坏隐藏的原则,保证了安全性还可以节 ...

  3. NOIP 2016 迟来的满贯

    17-03-22,雨 17-03-22,一个特别重要的日子 在这一天,本蒻攻克了NOIP 2016最难的一题,D1T2——天天爱跑步 实现了NOIP 2016的AK! YAYAYAYAYAYAY 自然 ...

  4. 删除git库中untracked files(未监控)的文件

    https://blog.csdn.net/ronnyjiang/article/details/53507306 在编译git库拉下来的代码时,往往会产生一些中间文件,这些文件我们根本不需要,尤其是 ...

  5. 统计学习方法九:EM算法

    一.EM算法是什么? EM算法是一种迭代算法,用于含有隐变量的概率模型参数的极大似然估计. 作用:简单直白的说,估计参数 是一种生成模型 (1)用在概率模型中 (2)含有隐变量 (3)用极大似然估计方 ...

  6. JS动态创建元素(两种方法)

    前言 创建元素有两种方法 1)将需要创建的元素,以字符串的形式拼接:找到父级元素,直接对父级元素的innnerHTML进行赋值. 2)使用Document.Element对象自带的一些函数,来实现动态 ...

  7. ROS新动态获取网址汇总

    ROS新动态获取网址汇总 1 planet ROS http://planet.ros.org/ 2 ROS news http://www.ros.org/news/ 3 ROS-Industria ...

  8. Python学习笔记:bisect模块实现二分搜索

    在Python中可以利用bisect模块来实现二分搜索,该模块包含函数只有几个: import bisect L = [1,3,4,5,5,5,8,10] x = 5 bisect.bisect_le ...

  9. Spark(四)Spark之Transformation和Action

    Transformation算子 基本的初始化 java static SparkConf conf = null; static JavaSparkContext sc = null; static ...

  10. bzoj 4551

    4551 思路: 乱搞: 代码: #include <cstdio> #include <cstring> #include <iostream> #include ...