BZOJ 2118 墨墨的等式(最短路)
【题目链接】 http://www.lydsy.com/JudgeOnline/problem.php?id=2118
【题目大意】
求a1x1+a2y2+…+anxn=B在B的取值范围,有多少B可以使等式存在非负整数解。
【题解】
同余最短路,不等式解集计数即可。
【代码】
#include <cstdio>
#include <algorithm>
#include <queue>
using namespace std;
const int N=500010;
namespace DIJKSTRA{
typedef long long LL;
const LL INF=0x3f3f3f3f3f3f3f3f;
typedef pair<LL,int>P;
priority_queue<P,vector<P>,greater<P> >Q;
int a[N],n,m; LL d[N];
void Initialize(){
int x,i;
sort(a,a+n); m=a[0]; d[0]=0;
for(i=1;i<m;i++)d[i]=INF;Q.push(P(0,0));
while(!Q.empty()){
P t=Q.top();Q.pop();
if(d[t.second]<t.first)continue;
for(x=t.second,i=1;i<n;i++){
if(d[x]+a[i]<d[(x+a[i])%m])Q.push(P(d[(x+a[i])%m]=d[x]+a[i],(x+a[i])%m));
}
}
}
LL Query(LL x){
LL res=0;
for(int i=0;i<m;i++)if(d[i]<=x)res+=(x-d[i])/m+1;
return res;
}
}
long long L,R;
int main(){
using namespace DIJKSTRA;
scanf("%d%lld%lld",&n,&L,&R);
for(int i=0;i<n;i++)scanf("%d",&a[i]);
Initialize();
printf("%lld\n",Query(R)-Query(L-1));
return 0;
}
BZOJ 2118 墨墨的等式(最短路)的更多相关文章
- 【BZOJ 2118】 墨墨的等式(Dijkstra)
BZOJ2118 墨墨的等式 题链:http://www.lydsy.com/JudgeOnline/problem.php?id=2118 Description 墨墨突然对等式很感兴趣,他正在研究 ...
- 【BZOJ 2118】墨墨的等式
http://www.lydsy.com/JudgeOnline/problem.php?id=2118 最短路就是为了找到最小的$x$满足$x=k×a_{min}+d,0≤d<a_{min}$ ...
- bzoj 2118 墨墨的等式 - 图论最短路建模
墨墨突然对等式很感兴趣,他正在研究a1x1+a2y2+…+anxn=B存在非负整数解的条件,他要求你编写一个程序,给定N.{an}.以及B的取值范围,求出有多少B可以使等式存在非负整数解. Input ...
- 【BZOJ 2118】 2118: 墨墨的等式 (最短路)
2118: 墨墨的等式 Description 墨墨突然对等式很感兴趣,他正在研究a1x1+a2y2+…+anxn=B存在非负整数解的条件,他要求你编写一个程序,给定N.{an}.以及B的取值范围,求 ...
- [图论训练]BZOJ 2118: 墨墨的等式 【最短路】
Description 墨墨突然对等式很感兴趣,他正在研究a1x1+a2y2+…+anxn=B存在非负整数解的条件,他要求你编写一个程序,给定N.{an}.以及B的取值范围,求出有多少B可以使等式存在 ...
- 数论+spfa算法 bzoj 2118 墨墨的等式
2118: 墨墨的等式 Time Limit: 10 Sec Memory Limit: 259 MBSubmit: 1283 Solved: 496 Description 墨墨突然对等式很感兴 ...
- bzoj 2118: 墨墨的等式 spfa
题目: 墨墨突然对等式很感兴趣,他正在研究\(a_1x_1+a_2y_2+ ... +a_nx_n=B\)存在非负整数解的条件,他要求你编写一个程序,给定\(N,\{a_n\}\)以及\(B\)的取值 ...
- bzoj 2118: 墨墨的等式
Description 墨墨突然对等式很感兴趣,他正在研究a1x1+a2y2+-+anxn=B存在非负整数解的条件,他要求你编写一个程序,给定N.{an}.以及B的取值范围,求出有多少B可以使等式存在 ...
- 【BZOJ2118】墨墨的等式(最短路)
[BZOJ2118]墨墨的等式(最短路) 题面 BZOJ 洛谷 题解 和跳楼机那题是一样的. 只不过走的方式从\(3\)种变成了\(n\)种而已,其他的根本没有区别了. #include<ios ...
- BZOJ2118墨墨的等式[数论 最短路建模]
2118: 墨墨的等式 Time Limit: 10 Sec Memory Limit: 259 MBSubmit: 1317 Solved: 504[Submit][Status][Discus ...
随机推荐
- apache服务器yii2报The fileinfo PHP extension is not installed解决思路
这个问题整整困扰了我两天,今天终于搞定了.记录一下. 背景是这样的,我呢,在centos服务器上安装了lamp环境,其中php是5.3.3,在用composer安装yii2的时候,出现了某些yii2插 ...
- sparse coding
Deep Learning(深度学习)学习笔记整理系列 zouxy09@qq.com http://blog.csdn.net/zouxy09 作者:Zouxy version 1.0 2013-04 ...
- TCP报文的最大负载和报文的最小长度
TCP报文的最大负载和报文的最小长度 MTU:最大传输单元,以太网的MTU为1500Bytes MSS:最大分解大小,为每次TCP数据包每次传输的最大数据的分段大小,由发送端通知接收端,发送大于MTU ...
- 安装virtualenv(Scrapy)
Windows 10家庭中文版,Python 3.6.4, virtualenv用来提供一个应用程序独立的 运行环境,这个独立是相对于系统的Python运行环境而言,开发者可以在virtualenv建 ...
- Python基础:内置异常(未完待续)
本文根据Python 3.6.5的官文Built-in Exceptions编写,不会很详细,仅对Python的内置异常进行简单(重难点)介绍——很多异常都可以从名称判断出其意义,罗列所有的内置异常. ...
- Python解决八皇后问题的代码【解读】
八皇后问题 来自于西方象棋(现在叫 国际象棋,英文chess),详情可见百度百科. 在西方象棋中,有一种叫做皇后的棋子,在棋盘上,如果双方的皇后在同一行.同一列或同一斜线上,就会互相攻击. 八皇后问题 ...
- An overview of gradient descent optimization algorithms (更新到Adam)
Momentum:解快了收敛速度,同时也减弱了SGD的波动 NAG: 减速了Momentum更新参数太快 Adagrad: 出现频率较低参数采用较大的更新,对于出现频率较高的参数采用较小的,不共用一个 ...
- java基础33 Set集合下的HashSet集合和TreeSet集合
单例集合体系: ---------| collection 单例集合的根接口--------------| List 如果实现了list接口的集合类,具备的特点:有序,可重复 注:集合 ...
- java 二叉树遍历
package com.lever; import java.util.LinkedList;import java.util.Queue; /** * 二叉树遍历 * @author lckxxy ...
- 10 个优质的 Laravel 扩展推荐
这里有 10+ 个用来搭建 Laravel 应用的包 为何会创建这个包的列表?因为我是一个「比较懒」的开发者,在脸书上是多个 Laravel 小组的成员.平日遇到最多的问题就是开发是需要用那些包.我很 ...