BZOJ 2118 墨墨的等式(最短路)
【题目链接】 http://www.lydsy.com/JudgeOnline/problem.php?id=2118
【题目大意】
求a1x1+a2y2+…+anxn=B在B的取值范围,有多少B可以使等式存在非负整数解。
【题解】
同余最短路,不等式解集计数即可。
【代码】
#include <cstdio>
#include <algorithm>
#include <queue>
using namespace std;
const int N=500010;
namespace DIJKSTRA{
typedef long long LL;
const LL INF=0x3f3f3f3f3f3f3f3f;
typedef pair<LL,int>P;
priority_queue<P,vector<P>,greater<P> >Q;
int a[N],n,m; LL d[N];
void Initialize(){
int x,i;
sort(a,a+n); m=a[0]; d[0]=0;
for(i=1;i<m;i++)d[i]=INF;Q.push(P(0,0));
while(!Q.empty()){
P t=Q.top();Q.pop();
if(d[t.second]<t.first)continue;
for(x=t.second,i=1;i<n;i++){
if(d[x]+a[i]<d[(x+a[i])%m])Q.push(P(d[(x+a[i])%m]=d[x]+a[i],(x+a[i])%m));
}
}
}
LL Query(LL x){
LL res=0;
for(int i=0;i<m;i++)if(d[i]<=x)res+=(x-d[i])/m+1;
return res;
}
}
long long L,R;
int main(){
using namespace DIJKSTRA;
scanf("%d%lld%lld",&n,&L,&R);
for(int i=0;i<n;i++)scanf("%d",&a[i]);
Initialize();
printf("%lld\n",Query(R)-Query(L-1));
return 0;
}
BZOJ 2118 墨墨的等式(最短路)的更多相关文章
- 【BZOJ 2118】 墨墨的等式(Dijkstra)
BZOJ2118 墨墨的等式 题链:http://www.lydsy.com/JudgeOnline/problem.php?id=2118 Description 墨墨突然对等式很感兴趣,他正在研究 ...
- 【BZOJ 2118】墨墨的等式
http://www.lydsy.com/JudgeOnline/problem.php?id=2118 最短路就是为了找到最小的$x$满足$x=k×a_{min}+d,0≤d<a_{min}$ ...
- bzoj 2118 墨墨的等式 - 图论最短路建模
墨墨突然对等式很感兴趣,他正在研究a1x1+a2y2+…+anxn=B存在非负整数解的条件,他要求你编写一个程序,给定N.{an}.以及B的取值范围,求出有多少B可以使等式存在非负整数解. Input ...
- 【BZOJ 2118】 2118: 墨墨的等式 (最短路)
2118: 墨墨的等式 Description 墨墨突然对等式很感兴趣,他正在研究a1x1+a2y2+…+anxn=B存在非负整数解的条件,他要求你编写一个程序,给定N.{an}.以及B的取值范围,求 ...
- [图论训练]BZOJ 2118: 墨墨的等式 【最短路】
Description 墨墨突然对等式很感兴趣,他正在研究a1x1+a2y2+…+anxn=B存在非负整数解的条件,他要求你编写一个程序,给定N.{an}.以及B的取值范围,求出有多少B可以使等式存在 ...
- 数论+spfa算法 bzoj 2118 墨墨的等式
2118: 墨墨的等式 Time Limit: 10 Sec Memory Limit: 259 MBSubmit: 1283 Solved: 496 Description 墨墨突然对等式很感兴 ...
- bzoj 2118: 墨墨的等式 spfa
题目: 墨墨突然对等式很感兴趣,他正在研究\(a_1x_1+a_2y_2+ ... +a_nx_n=B\)存在非负整数解的条件,他要求你编写一个程序,给定\(N,\{a_n\}\)以及\(B\)的取值 ...
- bzoj 2118: 墨墨的等式
Description 墨墨突然对等式很感兴趣,他正在研究a1x1+a2y2+-+anxn=B存在非负整数解的条件,他要求你编写一个程序,给定N.{an}.以及B的取值范围,求出有多少B可以使等式存在 ...
- 【BZOJ2118】墨墨的等式(最短路)
[BZOJ2118]墨墨的等式(最短路) 题面 BZOJ 洛谷 题解 和跳楼机那题是一样的. 只不过走的方式从\(3\)种变成了\(n\)种而已,其他的根本没有区别了. #include<ios ...
- BZOJ2118墨墨的等式[数论 最短路建模]
2118: 墨墨的等式 Time Limit: 10 Sec Memory Limit: 259 MBSubmit: 1317 Solved: 504[Submit][Status][Discus ...
随机推荐
- iOS学习笔记(1)— UIView 渲染和内容管理
iOS中应用程序基本上都是基于MVC模式开发的.UIView就是模型-视图-控制器中的视图,在iOS终端上看到的.摸到的都是UIView. UIView在屏幕上定义了一个矩形区域和管理区域内容的接口. ...
- [转]Git忽略提交规则 - .gitignore配置运维总结
在使用Git的过程中,我们喜欢有的文件比如日志,临时文件,编译的中间文件等不要提交到代码仓库,这时就要设置相应的忽略规则,来忽略这些文件的提交.简单来说一个场景:在你使用git add .的时候,遇到 ...
- Web 前端开发规范文档
通用规范: TAB键用两个空格代替(WINDOWS下TAB键占四个空格,LINUX下TAB键占八个空格). CSS样式属性或者JAVASCRIPT代码后加“;”方便压缩工具“断句”. 文件内容编码均统 ...
- Python标准库内置函数complex介绍
from:http://www.jb51.net/article/57798.htm 本函数可以使用参数real + imag*j方式创建一个复数.也可以转换一个字符串的数字为复数:或者转换一个数字为 ...
- python内置模块之itertools
前言 itertools模块是python内置的迭代器模块,定义了可生成多种迭代器的函数,用来代替可迭代对象的遍历等操作,节约内存. 迭代器函数的类型 无限迭代器:包括count.cycle.repe ...
- MySQL 5.7以后怎么查看索引使用情况?
MySQL 5.7以后怎么查看索引使用情况? 0.在sys库中查看没用的索引 root@localhost [sys]>select * from schema_unused_indexes; ...
- MySQL 5.7.17 Group Relication(组复制)搭建手册【转】
本博文介绍了Group Replication的两种工作模式的架构.并详细介绍了Single-Master Mode的部署过程,以及如何切换到Multi-Master Mode.当然,文末给出了Gro ...
- [how to]HBase Snapshots原理与使用
1.简介 Snapshots即快照的意思,作用于表上.在对于表做快照的时候不会造成文件的拷贝,如不会对HFile文件进行拷贝而是以链接的方式链接到元表的HFile上.可以说它是一种元数据的集合,可以快 ...
- JS可以监控手机的返回键吗?
html5的话 一进页面就pushState,然后监控onpopstate不过好像没有办法知道是前进还是后退我的奇淫巧计是,一个数字变量,pushState一个锚,锚是这个数字,前进一个页面数字+1, ...
- P2471 [SCOI2007]降雨量
Description 我们常常会说这样的话:"X年是自Y年以来降雨量最多的".它的含义是X年的降雨量不超过Y年,且对于任意Y<Z<X,Z年的降雨量严格小于X年.例如2 ...