[SDOI2010]外星千足虫 题解 高斯消元+bitset简介
高斯消元 + bitset 简介:
高斯消元其实就是以加减消元为核心求唯一解。这道题还是比较裸的,可以快速判断出来。我们将每一只虫子看作一个未知数,这样根据它给出的 m 组方程我们可以高斯消元得出每一只虫子的归属地。如果你还不清楚高斯消元的原理可以移步此处
如果你只是以为这是一道板子题自信提交,那么恭喜你,你将会获得TLE的好成绩。为什么呢?我们知道高斯消元是 $ n^3 $ 复杂度的,而本题数据范围 $ n \leq 1000 $ ,$ m \leq 2000 $ ,明显会卡出TLE。
于是乎,bitset登场了,先介绍一下:
bitset是一种专门用来储存二进制的数组,使用前要先调用函数库。
他的每一个元素只占 1 bit空间,你可以将它当作bool类型的高精度。
他的优点很多,你可将他整体使用,也可单个访问,例如:
bitset<4> a (string("1001"));
bitset<4> b (string("0011"));
//注:bitset后面那对尖括号里的数表示a数组的大小
a+=b;
//此时a数组为1100
a[3]=1;
a[1]=0;
//此时a数组为1001
你不访问它单个的值是,bitset的运算就像一个普通的整数一样,可以进行与(&)、或(|)、异或(^)、左移(<<)、右移(>>)等操作。同时你还可以对这个数里的任意一位赋值修改。
这样我们就可以将高斯消元降为二维,将每一个方程用一个bitset维护,在用异或运算进行消元即可。
代码如下:
#include<iostream>
#include<cstdio>
#include<iomanip>
#include<algorithm>
#include<bitset>//调用bitset函数库
#define ll long long
#define db double
#define inf 0x7fffffff
using namespace std;
bitset<1005> s[2001];
int n,m,ans,now=1;
inline int qr(){//快读
char ch;
while((ch=getchar())<'0'||ch>'9');
int res=ch^48;
while((ch=getchar())>='0'&&ch<='9')
res=(res<<1)+(res<<3)+(ch^48);
return res;
}
inline int rd(){
char ch;
while((ch=getchar())<'0'||ch>'9');
return ch^48;//每次只读一个
}
int main(){
//freopen(".in","r",stdin);
//freopen(".out","w",stdout);
n=qr()+1,m=qr();
for(int i=1;i<=m;++i)//读入
for(int j=1;j<=n;++j)
s[i][j]=rd();
for(int i=1;i<n;now=++i){
while(!s[now][i]&&now<=m)++now;
ans=max(ans,now);//更新 k 值
if(now==m+1){
printf("Cannot Determine\n");
return 0;
} //方程不构成唯一解
if(now!=i)swap(s[i],s[now]);
for(int j=1;j<=m;j++){
if(i==j)continue; //不消自己
if(!s[j][i])continue;//不是1就不用消
s[j]^=s[i];//用异或消去系数 1
}//消去其他方程的系数
}
printf("%d\n",ans);
for(int i=1;i<n;++i)
if(s[i][n])printf("?y7M#\n");
else printf("Earth\n");
return 0;
}
bitset除了可以整体运算外还有很多功能:
foo.size() 返回大小(位数)
foo.count() 返回1的个数
foo.any() 返回是否有1
foo.none() 返回是否没有1
foo.set() 全都变成1
foo.set(p) 将第p + 1位变成1
foo.set(p, x) 将第p + 1位变成x
foo.reset() 全都变成0
foo.reset(p) 将第p + 1位变成0
foo.flip() 全都取反
foo.flip(p) 将第p + 1位取反
foo.to_ulong() 返回它转换为unsigned long的结果,如果超出范围则报错
foo.to_ullong() 返回它转换为unsigned long long的结果,如果超出范围则报错
foo.to_string() 返回它转换为string的结果
[SDOI2010]外星千足虫 题解 高斯消元+bitset简介的更多相关文章
- BZOJ_1923_[Sdoi2010]外星千足虫_高斯消元+bitset
BZOJ_1923_[Sdoi2010]外星千足虫_高斯消元 Description Input 第一行是两个正整数 N, M. 接下来 M行,按顺序给出 Charles 这M次使用“点足机”的统计结 ...
- bzoj 1923 [Sdoi2010]外星千足虫(高斯消元+bitset)
1923: [Sdoi2010]外星千足虫 Time Limit: 10 Sec Memory Limit: 64 MBSubmit: 634 Solved: 397[Submit][Status ...
- [luoguP2447] [SDOI2010]外星千足虫(高斯消元 + bitset)
传送门 用bitset优化,要不然n^3肯定超时 消元过程中有几点需要注意,找到最大元后break,保证题目中所说的K最小 如果有自由元说明解很多,直接返回 #include <bitset&g ...
- BZOJ1923 [Sdoi2010]外星千足虫 【高斯消元】
题目 输入格式 第一行是两个正整数 N, M. 接下来 M行,按顺序给出 Charles 这M次使用"点足机"的统计结果.每行 包含一个"01"串和一个数字,用 ...
- bzoj1923[Sdoi2010]外星千足虫(高斯消元)
Description Input 第一行是两个正整数 N, M. 接下来 M行,按顺序给出 Charles 这M次使用“点足机”的统计结果.每行 包含一个“01”串和一个数字,用一个空格隔开.“01 ...
- 【BZOJ】1923 [Sdoi2010]外星千足虫(高斯消元)
题目 传送门:QWQ 分析 高斯消元解异或方程组,和解普通方程组差不多. 范围有点大,要套一个bitset. 代码 #include <bits/stdc++.h> using names ...
- bzoj 1923: [Sdoi2010]外星千足虫【高斯消元】
裸的异或高斯消元 #include<iostream> #include<cstdio> using namespace std; const int N=2005; int ...
- [SDOI2010]外星千足虫(高斯消元)
高斯消元裸题... 方法一:暴力,O(2^n)20分 方法二:直接Gauss,加点玄学技巧搞得好的话70分 方法三:使用bitset优化,复杂度:$O(\frac{n^3}{ω})$ 不会的同学看一下 ...
- 【BZOJ 1923】1923: [Sdoi2010]外星千足虫 (高斯消元异或 | BITSET用法)
1923: [Sdoi2010]外星千足虫 Description Input 第一行是两个正整数 N, M. 接下来 M行,按顺序给出 Charles 这M次使用“点足机”的统计结果.每行 包含一个 ...
随机推荐
- 11git更改提交
.将不必要的文件add .上次提交觉得是错的 .不想改变暂存区内容,只是想调整提交的信息 .版本回滚 git reset HEAD 文件名 移除不必要的添加到暂存区的文件 git reset HEAD ...
- HBase 架构与工作原理3 - HBase 读写与删除原理
本文系转载,如有侵权,请联系我:likui0913@gmail.com 一.前言 在 HBase 中,Region 是有效性和分布的基本单位,这通常也是我们在维护时能直接操作的最小单位.比如当一个集群 ...
- [官网]SQLSERVER ON linux 的最低要求 以及安装方法
快速入门:在 Red Hat 上安装 SQL Server 并创建数据库 总体说明: 适用于: SQL Server (仅限 Linux)Azure SQL 数据库Azure SQL 数据仓库并行数据 ...
- Jvm dump介绍与使用(内存与线程)
很多情况下,都会出现dump这个字眼,java虚拟机jvm中也不例外,其中主要包括内存dump.线程dump. 当发现应用内存溢出或长时间使用内存很高的情况下,通过内存dump进行分析可找到原因. 当 ...
- js & auto copy
js & auto copy https://developer.mozilla.org/zh-CN/docs/Web/Events/copy Ctrl + C Command + C doc ...
- 在动作类上加上SkipValidation 在反射时候会获取到该反射信息 就不会执行validate方法
在动作类上加上SkipValidation 在反射时候会获取到该反射信息 就不会执行validate方法
- Ubuntu修改中文目录为英文
1.安装需要的软件 sudo apt install xdg-user-dirs-gtk 2.临时转换系统语言为英文,重启后会自动恢复原值的 export LANG=en_US 3.执行转换命令,弹出 ...
- 【刷题】BZOJ 3531 [Sdoi2014]旅行
Description S国有N个城市,编号从1到N.城市间用N-1条双向道路连接,满足 从一个城市出发可以到达其它所有城市.每个城市信仰不同的宗教,如飞天面条神教.隐形独角兽教.绝地教都是常见的信仰 ...
- Tomcat8.0配置JNDI多数据源
jndi配置 :此种配置需要在Tomcat的server.xml中和context.xml中配置数据源,在项目中引用. 需要在tomcat下加入数据库连接的jar包,相关包(ojdbc14;c3p0数 ...
- ASP.NET MVC API 接口验证
项目中有一个留言消息接口,接收其他系统的留言和展示留言,参考了网上的一些API验证方法,发现使用通用权限管理系统提供的验证方法最完美(http://www.cnblogs.com/jirigala/p ...