Python练习-递归二分算法
# 编辑者:闫龙
#递归,二分算法演示
l = [i for i in range(1,100)]#定义一个列表l,并追加1-99的所有数字
def FindNum(num,l):#定义函数FindNum传递需要查找的数字和l列表
start = int(len(l)/2) #获取列表l的中间值,用于二分算法
if(start == 0):#判断如果l列表的取中元素为0的话证明l列表中的元素已经只剩1个元素了
print(num,"is Miss")#如果生下一个元素都不能找到num的值则跳出整个函数
return None
if(l[start]>num): #如果l列表取中的元素大于num,就将拆分开的列表小于start的部分取出来重新赋值给l列表
l = l[0:start]
FindNum(num,l)#重新执行FindNum函数
elif(l[start] < num):#如果l列表的取中元素小于num,就将拆分开的列表大于start的部分取出来重新赋值给l列表
l = l[start:]
FindNum(num,l)#重新执行FindNum函数
else:#除了大于,小于两种情况之外,只剩下等于了
print(num,"is Find") FindNum(98,l)#执行FindNum函数
Python练习-递归二分算法的更多相关文章
- python-Day4-迭代器-yield异步处理--装饰器--斐波那契--递归--二分算法--二维数组旋转90度--正则表达式
本节大纲 迭代器&生成器 装饰器 基本装饰器 多参数装饰器 递归 算法基础:二分查找.二维数组转换 正则表达式 常用模块学习 作业:计算器开发 实现加减乘除及拓号优先级解析 用户输入 1 - ...
- Python学习(三):迭代器、生成器、装饰器、递归、算法、正则
1.迭代器 迭代器是访问集合的一种方式,迭代对象从集合的第一个元素开始访问,直到元素被访问结束,迭代器只能往前不能后退,最大的优点是不要求事先准备好整个迭代过程中的元素,这个特点使得它特别适合用于遍历 ...
- what' the python之递归函数、二分算法与汉诺塔游戏
what's the 递归? 递归函数的定义:在函数里可以再调用函数,如果这个调用的函数是函数本身,那么就形成了一个递归函数. 递归的最大深度为997,这个是程序强制定义的,997完全可以满足一般情况 ...
- 递归分治算法之二维数组二分查找(Java版本)
[java] /** * 递归分治算法学习之二维二分查找 * @author Sking 问题描述: 存在一个二维数组T[m][n],每一行元素从左到右递增, 每一列元素从上到下递增,现在需要查找元素 ...
- python之路——二分查找算法
楔子 如果有这样一个列表,让你从这个列表中找到66的位置,你要怎么做? l = [2,3,5,10,15,16,18,22,26,30,32,35,41,42,43,55,56,66,67,69,72 ...
- Python实现常用排序算法
Python实现常用排序算法 冒泡排序 思路: 它重复地走访过要排序的数列,一次比较两个元素,如果他们的顺序错误就把他们交换过来.走访数列的工作是重复地进行直到没有再需要交换,也就是说该数列已经排序完 ...
- python中的一些算法
两个基础知识点:递归和时间复杂度 递归 递归函数的特点:自己调用自己,有结束条件,看下面例子: def fun1(x): """无结束条件,报错""& ...
- python基础--递归、三元表达式、列表(字典)生成式、匿名函数、常用的内置函数
函数的递归:函数在调用阶段直接或者间接的又调用自身 递归的两个阶段: 1.回溯:就是一次次重复的过程,这个重复的过程必须建立在每一次重复问题的复杂度都是应该下降的,直接有一个最终的结束条件(这个结束条 ...
- Python实现各种排序算法的代码示例总结
Python实现各种排序算法的代码示例总结 作者:Donald Knuth 字体:[增加 减小] 类型:转载 时间:2015-12-11我要评论 这篇文章主要介绍了Python实现各种排序算法的代码示 ...
随机推荐
- [至顶网] Win2019 发布 LTSC 10年支持期
Windows Server 2019新特性:Linux.HCI…… Windows Server 2019是微软公司长期服务渠道(简称LTSC)之下新一轮的迭代产品,其中囊括大量新的特性以及部分管理 ...
- JS 把数组按倒序排列
var achearr=[1,2,3,4]; var bchearr=[]; //方法1: for (var i = 0; i <=achearr.length;i++) { bchearr.p ...
- web.config文件详解[转]
一).Web.Config是以XML文件规范存储,配置文件分为以下格式1.配置节处理程序声明特点: 位于配置文件的顶部,包含在<configSections>标志中.2.特定应用程序配置特 ...
- 使用jQuery在javascript中自定义事件
js中的自定义事件有attachEvent,addEventListener等等好多种,往往受困于浏览器兼容,而且代码写起来也相当麻烦.jQuery为我们解决了这个问题,几行代码就可以很好的实现事件的 ...
- TJOI2013数字根
题面链接 洛谷 sol 我们先不考虑\(0\),发现数字根\(=\)它\(mod 9\). 我们前缀和一波,把区间和变成两数相减. 对于每个\(v\in\{0-8\}\),(这里面的\(mod 9=0 ...
- Codeforces 633C Spy Syndrome 2 | Trie树裸题
Codeforces 633C Spy Syndrome 2 | Trie树裸题 一个由许多空格隔开的单词组成的字符串,进行了以下操作:把所有字符变成小写,把每个单词颠倒过来,然后去掉单词间的空格.已 ...
- Beta 反(tu)思(cao) && 获小黄衫感言
写在前面 终于要结束了...我的心情就像走在沙漠中的人看到了一片绿洲一样,身体很疲惫,心情是自由自在~ 这是一篇总结反思的博客 (为了附加分),顺便把早该写的获小黄衫感言一起发了. Beta 反思 做 ...
- CentOS安装oracleJDK
实践证明,oracleJDK比openJDK快不止一星半点,换了之后立马从满负载降到个位数负载. 1.卸载openjdk # rpm -qa | grep -E '^(java|jdk)' # yum ...
- 解题:CQOI 2013 和谐矩阵
题面 踩踩时间复杂度不正确的高斯消元 首先可以发现第一行确定后就可以确定整个矩阵,所以可以枚举第一行的所有状态然后$O(n)$递推检查是否合法 $O(n)$递推的方法是这样的:设$pre$为上一行,$ ...
- Java-异常机制详解以及开发时异常设计的原则要求
Java-异常机制详解以及开发时异常设计的原则要求 http://blog.csdn.net/Jack__Frost/article/details/52760930?locationNum=6