[AHOI2009]最小割
最小割的可行边和必须边
可行边\((u,v)\)需要满足以下两个条件
满流
残量网络中不存在\(u\)到\(v\)的路径
这个挺好理解的呀,如果存在还存在路径的话那么这条边就不会是瓶颈了
必须边\((u,v)\)需要满足的条件
满流
残量网络中\(S\)能到达\(u\),\(v\)能到达\(T\)
这样的话\((u,v)\)就成为了唯一的瓶颈了
我们可以直接在残量网络上跑\(tarjan\),只跑没满流的边
如果发现\(u\)和\(v\)不在同一强联通分量里,就说明这是一条可行边
因为\((u,v)\)满流,\((v,u)\)必然存在,在同一连通分量里就说明可以从\(u\)走到\(v\)形成一个环,也就存在\(u\)到\(v\)的路径
如果\(u\)和\(S\)在同一个强联通分量里,\(v\)和\(T\)在同一个强连通分量里,那么说明这是一条必须边,和上面类似
代码
#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio>
#include<queue>
#define re register
#define LL long long
#define max(a,b) ((a)>(b)?(a):(b))
#define min(a,b) ((a)<(b)?(a):(b))
const int maxn=4e3+5;
const int inf=1e9;
inline int read() {
char c=getchar();int x=0;while(c<'0'||c>'9') c=getchar();
while(c>='0'&&c<='9') x=(x<<3)+(x<<1)+c-48,c=getchar();return x;
}
std::queue<int> q;
struct E{int v,nxt,f;}e[150000];
int n,m,S,T,cnt,top,p,mid,num=1;
int dfn[maxn],low[maxn],st[maxn],f[maxn];
int head[maxn],d[maxn],cur[maxn],col[maxn];
inline void C(int x,int y,int f) {
e[++num].v=y;e[num].nxt=head[x];
head[x]=num;e[num].f=f;
}
int X[60005],Y[60005],id[60005];
inline void add(int x,int y,int f) {C(x,y,f),C(y,x,0);}
inline int BFS() {
for(re int i=1;i<=n;i++) d[i]=0,cur[i]=head[i];
d[S]=1,q.push(S);
while(!q.empty()) {
int k=q.front();q.pop();
for(re int i=head[k];i;i=e[i].nxt)
if(!d[e[i].v]&&e[i].f) d[e[i].v]=d[k]+1,q.push(e[i].v);
}
return d[T];
}
int dfs(int x,int now) {
if(x==T||!now) return now;
int flow=0,ff;
for(re int& i=cur[x];i;i=e[i].nxt)
if(d[e[i].v]==d[x]+1) {
ff=dfs(e[i].v,min(e[i].f,now));
if(now<=0) continue;
now-=ff,flow+=ff,e[i].f-=ff,e[i^1].f+=ff;
if(!now) break;
}
return flow;
}
void tarjan(int x) {
dfn[x]=low[x]=++cnt;
st[++top]=x;f[x]=1;
for(re int i=head[x];i;i=e[i].nxt) {
if(!e[i].f) continue;
if(!dfn[e[i].v]) tarjan(e[i].v),low[x]=min(low[x],low[e[i].v]);
else if(f[e[i].v]) low[x]=min(low[x],dfn[e[i].v]);
}
if(dfn[x]==low[x]) {
++p;
do {
mid=st[top--];
f[mid]=0;
col[mid]=p;
}while(x!=mid);
}
}
int main() {
n=read(),m=read();S=read(),T=read();
for(re int z,i=1;i<=m;i++) {
X[i]=read(),Y[i]=read();
z=read();id[i]=num+1;add(X[i],Y[i],z);
}
while(BFS()) dfs(S,inf);
for(re int i=1;i<=n;i++) if(!dfn[i]) tarjan(i);
for(re int i=1;i<=m;i++) {
if(col[X[i]]!=col[Y[i]]&&!e[id[i]].f) putchar('1');
else putchar('0');
putchar(' ');
if(!e[id[i]].f&&col[X[i]]==col[S]&&col[Y[i]]==col[T]) putchar('1');
else putchar('0');
putchar(10);
}
return 0;
}
[AHOI2009]最小割的更多相关文章
- P4126 [AHOI2009]最小割
题目地址:P4126 [AHOI2009]最小割 最小割的可行边与必须边 首先求最大流,那么最小割的可行边与必须边都必须是满流. 可行边:在残量网络中不存在 \(x\) 到 \(y\) 的路径(强连通 ...
- 【BZOJ1797】[AHOI2009]最小割(网络流)
[BZOJ1797][AHOI2009]最小割(网络流) 题面 BZOJ 洛谷 题解 最小割的判定问题,这里就当做记结论吧.(源自\(lun\)的课件) 我们先跑一遍最小割,求出残量网络.然后把所有还 ...
- P4126 [AHOI2009]最小割(网络流+tarjan)
P4126 [AHOI2009]最小割 边$(x,y)$是可行流的条件: 1.满流:2.残量网络中$x,y$不连通 边$(x,y)$是必须流的条件: 1.满流:2.残量网络中$x,S$与$y,T$分别 ...
- 洛谷P4126 [AHOI2009]最小割
题目:洛谷P4126 [AHOI2009]最小割 思路: 结论题 在残余网络上跑tarjan求出所有SCC,记id[u]为点u所在SCC的编号.显然有id[s]!=id[t](否则s到t有通路,能继续 ...
- AHOI2009最小割
1797: [Ahoi2009]Mincut 最小割 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 1072 Solved: 446[Submit] ...
- BZOJ1797:[AHOI2009]最小割(最小割)
Description A,B两个国家正在交战,其中A国的物资运输网中有N个中转站,M条单向道路.设其中第i (1≤i≤M)条道路连接了vi,ui两个中转站,那么中转站vi可以通过该道路到达ui中转站 ...
- [AHOI2009]最小割 最小割可行边&必须边
~~~题面~~~ 题解: 做这题的时候才知道有最小割可行边和必须边这种东西..... 1,最小割可行边, 意思就是最小割中可能出现的边. 充要条件: 1,满流 2,在残余网络中找不到x ---> ...
- [BZOJ1797][AHOI2009]最小割Mincut
bzoj luogu sol 一条边出现在最小割集中的必要条件和充分条件. 先跑出任意一个最小割,然后在残余网络上跑出\(scc\). 一条边\((u,v)\)在最小割集中的必要条件:\(bel[u] ...
- 洛谷$P4126\ [AHOI2009]$最小割 图论
正解:网络流+$tarjan$ 解题报告: 传送门$QwQ$ $umm$最小割的判定问题$QwQ$,因为并不会做是看的题解才会的,所以也没什么推导过程直接放结论趴$QwQ$ 首先跑个最大流,然后有. ...
随机推荐
- [日常] go语言圣经-获取URL练习题
1.主要使用net/http和io/ioutil包 2.http.Get函数是创建HTTP请求的函数,resp这个结构体中,Body字段包括一个可读的服务器响应流 3.ioutil.ReadAll函数 ...
- Java的Collection.sort()方法
Java中的Collection.sort()方法能使用泛型对对象的变量进行排序,下面是两种方法. 文件名:student.java import java.util.*; import com.su ...
- 悟空模式-java-单例模式
[那座山,正当顶上,有一块仙石.其石有三丈六尺五寸高,有二丈四尺围圆.三丈六尺五寸高,按周天三百六十五度:二丈四尺围圆,按政历二十四气.上有九窍八孔,按九宫八卦.四面更无树木遮阴,左右倒有芝兰相衬.盖 ...
- Android开发之旅1:环境搭建及HelloWorld
——工欲善其事必先利其器 引言 本系列适合0基础的人员,因为我就是从0开始的,此系列记录我步入Android开发的一些经验分享,望与君共勉!作为Android队伍中的一个新人的我,如果有什么不对的地方 ...
- 移动端Web Meta标签
原文 http://blog.segmentfault.com/jianjian_532633/1190000000654839 添加到推刊 在介绍移动端特有 meta 标签之前,先简单说一下 ...
- CSS 媒体查询创建响应式网站
使用 CSS 媒体查询创建响应式网站 适用于所有屏幕大小的设计 固定宽度的静态网站很快被灵活的响应式设计所取代,该设计可以根据屏幕大小进行上扩和下扩.利用响应式设计,无论您采用什么设备或屏幕来访问网 ...
- IT小鲜肉 widgets tree 三种格式数据源
昨天完成了下面几个功能,其中最麻烦的就是做图.边学GIMP用法边做图 1.使用GIMP软件G了几个图标 2.支持一维数组数据源,并按照指定的属性对数据源中的数据进行自动分组 运行效果: 3.支持由pi ...
- Modernizing Business Process with Cloud and AI
The world is awash with digital transformation. Every customer and partner that I talk to, across ev ...
- RxJava重温基础
RxJava是什么 a library for composing asynchronous and event-based programs using observable sequences f ...
- 可执行文件patch技术&&持续更新
前言 在ctf比赛中, 有时我们需要对可执行文件进行patch, 或者在植入后门时,patch也是常用的手段.不过手工patch比较麻烦,下面介绍几个工具.本文介绍遇到的各种技术,不断更新. ELF ...