题解

显然是个\(n^2\)的dp

我们要找每个点不穿过非赛道区域能到达哪些区域的交点

可以通过控制两条向量负责最靠下的上边界,和最靠上的下边界,检查当前点在不在这两条向量之间即可,对于每个点可以\(O(n)\)求出来哪些点是可以到达的

之后dp即可

注意判断S点所在区域的时候需要找靠后的那个区域……

代码

#include <iostream>
#include <algorithm>
#include <cstdio>
#include <cstring>
#include <queue>
#include <cmath>
#define enter putchar('\n')
#define space putchar(' ')
#define mp make_pair
#define pb push_back
#define fi first
#define se second
#define eps 1e-7
//#define ivorysi
using namespace std;
typedef long long int64;
typedef double db;
template<class T>
void read(T &res) {
res = 0;char c = getchar();T f = 1;
while(c < '0' || c > '9') {
if(c == '-') f = -1;
c = getchar();
}
while(c >= '0' && c <= '9') {
res = res * 10 + c - '0';
c = getchar();
}
res *= f;
}
template<class T>
void out(T x) {
if(x < 0) {putchar('-');x = -x;}
if(x >= 10) {
out(x / 10);
}
putchar('0' + x % 10);
}
int N;
struct Point {
db x,y;
Point() {}
Point(db _x,db _y) {
x = _x;y = _y;
}
friend Point operator + (const Point &a,const Point &b) {
return Point(a.x + b.x,a.y + b.y);
}
friend Point operator - (const Point &a,const Point &b) {
return Point(a.x - b.x,a.y - b.y);
}
friend Point operator * (const Point &a,const db d) {
return Point(a.x * d,a.y * d);
}
friend Point operator / (const Point &a,const db d) {
return Point(a.x / d,a.y / d);
}
friend db operator * (const Point &a,const Point &b) {
return a.x * b.y - a.y * b.x;
}
}S,T,U[2005],D[2005],pos[2005][2];
db dis(Point a,Point b) {
return sqrt((a.x - b.x) * (a.x - b.x) + (a.y - b.y) * (a.y - b.y));
}
db v,ans,dp[2005][2];
bool vis[2005][2];
void Init() {
read(N);
for(int i = 1 ; i <= N ; ++i) {
scanf("%lf%lf%lf%lf",&D[i].x,&D[i].y,&U[i].x,&U[i].y);
}
scanf("%lf%lf",&S.x,&S.y);
scanf("%lf%lf",&T.x,&T.y);
scanf("%lf",&v);
if(S.x > T.x) swap(S,T);
for(int i = 2 ; i <= N ; ++i) {
pos[i][0] = Point(D[i].x,max(D[i].y,D[i - 1].y));
pos[i][1] = Point(D[i].x,min(U[i].y,U[i - 1].y));
}
}
db dfs(int p,int c) {
if(vis[p][c]) return dp[p][c];
vis[p][c] = 1;
Point M = pos[p][c];
if((T.x >= D[p].x && T.x < U[p].x) || (p == N)) return dp[p][c] = dis(M,T);
Point Up = pos[p + 1][1] - M,Dw = pos[p + 1][0] - M;
dp[p][c] = dfs(p + 1,1) + dis(M,pos[p + 1][1]);
dp[p][c] = min(dp[p][c],dfs(p + 1,0) + dis(M,pos[p + 1][0]));
for(int i = p + 2; i <= N ; ++i) {
if(D[i].x > T.x) break;
if(Dw * (pos[i][0] - M) >= 0 && (pos[i][0] - M) * Up >= 0) {
dp[p][c] = min(dp[p][c],dfs(i,0) + dis(M,pos[i][0]));
}
if(Dw * (pos[i][1] - M) >= 0 && (pos[i][1] - M) * Up >= 0) {
dp[p][c] = min(dp[p][c],dfs(i,1) + dis(M,pos[i][1]));
}
if(Dw * (pos[i][0] - M) >= 0) Dw = pos[i][0] - M;
if((pos[i][1] - M) * Up >= 0) Up = pos[i][1] - M;
}
if(Dw * (T - M) >= 0 && (T - M) * Up >= 0) {
return dp[p][c] = dis(M,T);
}
return dp[p][c];
}
void Solve() {
for(int i = 1 ; i <= N ; ++i) {
if(U[i].x <= S.x) continue;
pos[i][0] = S;
ans = dfs(i,0);
break;
}
if(ans == 0) ans = dis(S,T);
printf("%.6lf\n",ans / v);
}
int main() {
#ifdef ivorysi
freopen("f1.in","r",stdin);
#endif
Init();
Solve();
}

放假了真是颓啊QwQ

【LOJ】#2443. 「NOI2011」智能车比赛的更多相关文章

  1. LOJ#2444. 「NOI2011」阿狸的打字机

    题目描述 阿狸喜欢收藏各种稀奇古怪的东西,最近他淘到一台老式的打字机.打字机上只有 \(28\) 个按键,分别印有 \(26\) 个小写英文字母和 B . P 两个字母. 经阿狸研究发现,这个打字机是 ...

  2. Loj #2529. 「ZJOI2018」胖

    Loj #2529. 「ZJOI2018」胖 题目描述 Cedyks 是九条可怜的好朋友(可能这场比赛公开以后就不是了),也是这题的主人公. Cedyks 是一个富有的男孩子.他住在著名的 The P ...

  3. Loj #2192. 「SHOI2014」概率充电器

    Loj #2192. 「SHOI2014」概率充电器 题目描述 著名的电子产品品牌 SHOI 刚刚发布了引领世界潮流的下一代电子产品--概率充电器: 「采用全新纳米级加工技术,实现元件与导线能否通电完 ...

  4. Loj #3096. 「SNOI2019」数论

    Loj #3096. 「SNOI2019」数论 题目描述 给出正整数 \(P, Q, T\),大小为 \(n\) 的整数集 \(A\) 和大小为 \(m\) 的整数集 \(B\),请你求出: \[ \ ...

  5. Loj #3093. 「BJOI2019」光线

    Loj #3093. 「BJOI2019」光线 题目描述 当一束光打到一层玻璃上时,有一定比例的光会穿过这层玻璃,一定比例的光会被反射回去,剩下的光被玻璃吸收. 设对于任意 \(x\),有 \(x\t ...

  6. Loj #3089. 「BJOI2019」奥术神杖

    Loj #3089. 「BJOI2019」奥术神杖 题目描述 Bezorath 大陆抵抗地灾军团入侵的战争进入了僵持的阶段,世世代代生活在 Bezorath 这片大陆的精灵们开始寻找远古时代诸神遗留的 ...

  7. Loj #2542. 「PKUWC2018」随机游走

    Loj #2542. 「PKUWC2018」随机游走 题目描述 给定一棵 \(n\) 个结点的树,你从点 \(x\) 出发,每次等概率随机选择一条与所在点相邻的边走过去. 有 \(Q\) 次询问,每次 ...

  8. Loj #3059. 「HNOI2019」序列

    Loj #3059. 「HNOI2019」序列 给定一个长度为 \(n\) 的序列 \(A_1, \ldots , A_n\),以及 \(m\) 个操作,每个操作将一个 \(A_i\) 修改为 \(k ...

  9. Loj #3056. 「HNOI2019」多边形

    Loj #3056. 「HNOI2019」多边形 小 R 与小 W 在玩游戏. 他们有一个边数为 \(n\) 的凸多边形,其顶点沿逆时针方向标号依次为 \(1,2,3, \ldots , n\).最开 ...

随机推荐

  1. srpingboot2 session过期时间设置

    springboot2 设置session过期的配置 server.servlet.session.timeout = 1800 而不再是 server.session.timeout=1800

  2. MongoDB - MongoDB CRUD Operations, Bulk Write Operations

    Overview MongoDB provides clients the ability to perform write operations in bulk. Bulk write operat ...

  3. Presto通过RESTful接口新增Connector

    在实际使用Presto的过程中,经常会有以下的一些需求. 添加一个新的Catalog 对不再使用的Catalog希望把它删除 修改某个Catalog的参数 但在Presto中如果进行上述的修改,需要重 ...

  4. 20145234黄斐《Java程序设计》第七周

    教材学习内容总结 第十二章部分 - Lambda 认识Lambda语法 Lambda去可以重复,符合DRY原则,而且Lambda表达式可读性更好,操作更简单 匿名类型最大的问题就在于其冗余的语法,la ...

  5. Samba远程代码执行漏洞(CVE-2017-7494)复现

    简要记录一下Samba远程代码执行漏洞(CVE-2017-7494)环境搭建和利用的过程,献给那些想自己动手搭建环境的朋友.(虽然已过多时) 快捷通道:Docker ~ Samba远程代码执行漏洞(C ...

  6. C# Json字符串反序列化

    using DevComponents.DotNetBar; using MyControl; using Newtonsoft.Json; using System; using System.Co ...

  7. python collection 中的队列

    认识中的队列 在以前的认知里,队列是先进先出,就是一头进,一头出,Queue.而无意间看到了deque 双向队列. 即从该队列的头或者尾部都能插入和移除元素.而起时间复杂度竟然是一样的!O(1),是不 ...

  8. iOS学习笔记(3)— 屏幕旋转

    一.屏幕旋转机制: iOS通过加速计判断当前的设备方向和屏幕旋转.当加速计检测到方向变化的时候,屏幕旋转的流程如下: 1.设备旋转时,系统接收到旋转事件. 2.系统将旋转事件通过AppDelegate ...

  9. oracle数据类型表

    set SERVEROUTPUT ON declare v_char ); v_varchar2 ); begin v_char:='java'; v_varchar2:='java'; DBMS_O ...

  10. HaoZipC不是内部或外部命令

    Win7专业版,32位,HaoZip V3.2 将安装命令下HaoZipC.exe,HaoZip.dll,lang\HaoZipLang_chs.dll三个文件拷贝到C:\Windows\System ...