一、简化前馈网络LeNet

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
import torch as t
 
 
class LeNet(t.nn.Module):
    def __init__(self):
        super(LeNet, self).__init__()
        self.features = t.nn.Sequential(
            t.nn.Conv2d(365),
            t.nn.ReLU(),
            t.nn.MaxPool2d(22),
            t.nn.Conv2d(6165),
            t.nn.ReLU(),
            t.nn.MaxPool2d(22)
        )
        # 由于调整shape并不是一个class层,
        # 所以在涉及这种操作(非nn.Module操作)需要拆分为多个模型
        self.classifiter = t.nn.Sequential(
            t.nn.Linear(16*5*5120),
            t.nn.ReLU(),
            t.nn.Linear(12084),
            t.nn.ReLU(),
            t.nn.Linear(8410)
        )
 
    def forward(self, x):
        = self.features(x)
        = x.view(-116*5*5)
        = self.classifiter(x)
        return x
 
net = LeNet()

二、优化器基本使用方法

  1. 建立优化器实例
  2. 循环:
    1. 清空梯度
    2. 向前传播
    3. 计算Loss
    4. 反向传播
    5. 更新参数
1
2
3
4
5
6
7
8
9
10
11
from torch import optim
 
# 通常的step优化过程
optimizer = optim.SGD(params=net.parameters(), lr=1)
optimizer.zero_grad()  # net.zero_grad()
 
input_ = t.autograd.Variable(t.randn(133232))
output = net(input_)
output.backward(output)
 
optimizer.step()

三、网络模块参数定制

为不同的子网络参数不同的学习率,finetune常用,使分类器学习率参数更高,学习速度更快(理论上)。

1.经由构建网络时划分好的模组进行学习率设定,

1
2
3
# # 直接对不同的网络模块制定不同学习率
optimizer = optim.SGD([{'params': net.features.parameters()}, # 默认lr是1e-5
                       {'params': net.classifiter.parameters(), 'lr'1e-2}], lr=1e-5)

2.以网络层对象为单位进行分组,并设定学习率

1
2
3
4
5
6
7
8
9
10
# # 以层为单位,为不同层指定不同的学习率
# ## 提取指定层对象
special_layers = t.nn.ModuleList([net.classifiter[0], net.classifiter[3]])
# ## 获取指定层参数id
special_layers_params = list(map(id, special_layers.parameters()))
print(special_layers_params)
# ## 获取非指定层的参数id
base_params = filter(lambda p: id(p) not in special_layers_params, net.parameters())
optimizer = t.optim.SGD([{'params': base_params},
                         {'params': special_layers.parameters(), 'lr'0.01}], lr=0.001)

四、在训练中动态的调整学习率

1
2
3
4
5
6
7
8
9
'''调整学习率'''
# 新建optimizer或者修改optimizer.params_groups对应的学习率
# # 新建optimizer更简单也更推荐,optimizer十分轻量级,所以开销很小
# # 但是新的优化器会初始化动量等状态信息,这对于使用动量的优化器(momentum参数的sgd)可能会造成收敛中的震荡
# ## optimizer.param_groups:长度2的list,optimizer.param_groups[0]:长度6的字典
print(optimizer.param_groups[0]['lr'])
old_lr = 0.1
optimizer = optim.SGD([{'params': net.features.parameters()},
                       {'params': net.classifiter.parameters(), 'lr': old_lr*0.1}], lr=1e-5)

可以看到optimizer.param_groups结构,[{'params','lr', 'momentum', 'dampening', 'weight_decay', 'nesterov'},{……}],集合了优化器的各项参数。

import torch
from torch.optim.optimizer import Optimizer, required class SGD(Optimizer):
def __init__(self, params, lr=required, momentum=0, dampening=0, weight_decay1=0, weight_decay2=0, nesterov=False):
defaults = dict(lr=lr, momentum=momentum, dampening=dampening,
weight_decay1=weight_decay1, weight_decay2=weight_decay2, nesterov=nesterov)
if nesterov and (momentum <= 0 or dampening != 0):
raise ValueError("Nesterov momentum requires a momentum and zero dampening")
super(SGD, self).__init__(params, defaults) def __setstate__(self, state):
super(SGD, self).__setstate__(state)
for group in self.param_groups:
group.setdefault('nesterov', False) def step(self, closure=None):
"""Performs a single optimization step. Arguments: closure (callable, optional): A closure that reevaluates the model and returns the loss. """
loss = None
if closure is not None:
loss = closure() for group in self.param_groups:
weight_decay1 = group['weight_decay1']
weight_decay2 = group['weight_decay2']
momentum = group['momentum']
dampening = group['dampening']
nesterov = group['nesterov'] for p in group['params']:
if p.grad is None:
continue
d_p = p.grad.data
if weight_decay1 != 0:
d_p.add_(weight_decay1, torch.sign(p.data))
if weight_decay2 != 0:
d_p.add_(weight_decay2, p.data)
if momentum != 0:
param_state = self.state[p]
if 'momentum_buffer' not in param_state:
buf = param_state['momentum_buffer'] = torch.zeros_like(p.data)
buf.mul_(momentum).add_(d_p)
else:
buf = param_state['momentum_buffer']
buf.mul_(momentum).add_(1 - dampening, d_p)
if nesterov:
d_p = d_p.add(momentum, buf)
else:
d_p = buf p.data.add_(-group['lr'], d_p) return loss

Pytorch torch.optim优化器个性化使用的更多相关文章

  1. PyTorch官方中文文档:torch.optim 优化器参数

    内容预览: step(closure) 进行单次优化 (参数更新). 参数: closure (callable) –...~ 参数: params (iterable) – 待优化参数的iterab ...

  2. 『PyTorch』第十一弹_torch.optim优化器

    一.简化前馈网络LeNet import torch as t class LeNet(t.nn.Module): def __init__(self): super(LeNet, self).__i ...

  3. 『PyTorch』第十一弹_torch.optim优化器 每层定制参数

    一.简化前馈网络LeNet 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 im ...

  4. pytorch 7 optimizer 优化器 加速训练

    import torch import torch.utils.data as Data import torch.nn.functional as F import matplotlib.pyplo ...

  5. torch.optim优化算法理解之optim.Adam()

    torch.optim是一个实现了多种优化算法的包,大多数通用的方法都已支持,提供了丰富的接口调用,未来更多精炼的优化算法也将整合进来. 为了使用torch.optim,需先构造一个优化器对象Opti ...

  6. pytorch 想在一个优化器中设置多个网络参数的写法

    使用tertools.chain将参数链接起来即可 import itertools ... self.optimizer = optim.Adam(itertools.chain(self.enco ...

  7. [PyTorch 学习笔记] 4.3 优化器

    本章代码: https://github.com/zhangxiann/PyTorch_Practice/blob/master/lesson4/optimizer_methods.py https: ...

  8. [源码解析] PyTorch分布式优化器(1)----基石篇

    [源码解析] PyTorch分布式优化器(1)----基石篇 目录 [源码解析] PyTorch分布式优化器(1)----基石篇 0x00 摘要 0x01 从问题出发 1.1 示例 1.2 问题点 0 ...

  9. [源码解析] PyTorch分布式优化器(2)----数据并行优化器

    [源码解析] PyTorch分布式优化器(2)----数据并行优化器 目录 [源码解析] PyTorch分布式优化器(2)----数据并行优化器 0x00 摘要 0x01 前文回顾 0x02 DP 之 ...

随机推荐

  1. OpenJudge——0003:jubeeeeeat

    OpenJudge——0003:jubeeeeeat 描述 众所周知,LZF很喜欢打一个叫Jubeat的游戏.这是个音乐游戏,游戏界面是4×4的方阵,会根据音乐节奏要求玩家按下一些指定方块(以下称co ...

  2. java面试 关键字

    1. final关键字有哪些用法? 修饰类.方法和变量. (1) final变量是只读的,不允许改变其引用,与static共用可声明常量.JVM会对final变量进行优化,比如常量折叠. (2) fi ...

  3. iOS 9应用开发教程之创建iOS 9项目与模拟器介绍

    iOS 9应用开发教程之创建iOS 9项目与模拟器介绍 编写第一个iOS 9应用 本节将以一个iOS 9应用程序为例,为开发者讲解如何使用Xcode 7.0去创建项目,以及iOS模拟器的一些功能.编辑 ...

  4. CSS3组件化之ios版菊花loading

    <div class="juhua-loading"> <div class="jh-circle1 jh-circle-ios">&l ...

  5. [ 转载 ] Java Jvm内存介绍

    一.基础理论知识 1.java虚拟机的生命周期: Java虚拟机的生命周期 一个运行中的Java虚拟机有着一个清晰的任务:执行Java程序.程序开始执行时他才运行,程序结束时他就停止.你在同一台机器上 ...

  6. NOI.AC WC模拟赛

    4C(容斥) http://noi.ac/contest/56/problem/25 同时交换一行或一列对答案显然没有影响,于是将行列均从大到小排序,每次处理限制相同的一段行列(呈一个L形). 问题变 ...

  7. 【BZOJ】4260: Codechef REBXOR【Trie树】【前后缀异或最大】

    4260: Codechef REBXOR Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 2218  Solved: 962[Submit][Stat ...

  8. BZOJ 2330 SCOI2011糖果 差分约束

    2330: [SCOI2011]糖果 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 2819  Solved: 820 题目连接 http://www ...

  9. wikioi 1380 没有上司的舞会 树形dp

    1380 没有上司的舞会 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 钻石 Diamond       题目描述 Description Ural大学有N个职员,编号为1~N.他 ...

  10. 使用NFS启动Tiny4412开发板根文件系统

      1.Ubuntu14.04上搭建NFS服务 1.1.安装NFS服务 $ sudo apt-get install nfs-kernel-server    //安装NFS服务 1.2 创建Tiny ...