这篇文章主要是结合机器学习实战将推荐算法和SVD进行对应的结合

不论什么一个矩阵都能够分解为SVD的形式

事实上SVD意义就是利用特征空间的转换进行数据的映射,后面将专门介绍SVD的基础概念。先给出python,这里先给出一个简单的矩阵。表示用户和物品之间的关系

这里我自己有个疑惑?

对这样一个DATA = U(Z)Vt

这里的U和V真正的几何含义  :  书上的含义是U将物品映射到了新的特征空间, V的转置  将 用户映射到了新的特征空间

以下是代码实现。同一时候SVD还能够用于降维,降维的操作就是通过保留值比較的神秘值

# -*- coding: cp936 -*-
'''
Created on Mar 8, 2011 @author: Peter
'''
from numpy import *
from numpy import linalg as la #用到别名 #这里主要结合推荐系统介绍SVD,所以这里的数据都能够看成是用户对物品的一个打分
def loadExData():
return[[0, 0, 0, 2, 2],
[0, 0, 0, 3, 3],
[0, 0, 0, 1, 1],
[1, 1, 1, 0, 0],
[2, 2, 2, 0, 0],
[5, 5, 5, 0, 0],
[1, 1, 1, 0, 0]] def loadExData2():
return[[0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 5],
[0, 0, 0, 3, 0, 4, 0, 0, 0, 0, 3],
[0, 0, 0, 0, 4, 0, 0, 1, 0, 4, 0],
[3, 3, 4, 0, 0, 0, 0, 2, 2, 0, 0],
[5, 4, 5, 0, 0, 0, 0, 5, 5, 0, 0],
[0, 0, 0, 0, 5, 0, 1, 0, 0, 5, 0],
[4, 3, 4, 0, 0, 0, 0, 5, 5, 0, 1],
[0, 0, 0, 4, 0, 4, 0, 0, 0, 0, 4],
[0, 0, 0, 2, 0, 2, 5, 0, 0, 1, 2],
[0, 0, 0, 0, 5, 0, 0, 0, 0, 4, 0],
[1, 0, 0, 0, 0, 0, 0, 1, 2, 0, 0]] def ecludSim(inA,inB):
return 1.0/(1.0 + la.norm(inA - inB)) #计算向量的第二范式,相当于直接计算了欧式距离 def pearsSim(inA,inB):
if len(inA) < 3 : return 1.0
return 0.5+0.5*corrcoef(inA, inB, rowvar = 0)[0][1] #corrcoef直接计算皮尔逊相关系数 def cosSim(inA,inB):
num = float(inA.T*inB)
denom = la.norm(inA)*la.norm(inB)
return 0.5+0.5*(num/denom) #计算余弦类似度 #协同过滤算法
#dataMat 用户数据 user 用户 simMeas 类似度计算方式 item 物品
def standEst(dataMat, user, simMeas, item):
n = shape(dataMat)[1] #计算列的数量,物品的数量
simTotal = 0.0; ratSimTotal = 0.0
for j in range(n):
userRating = dataMat[user,j]
print(dataMat[user,j])
if userRating == 0: continue #假设用户u没有对物品j进行打分。那么这个推断就能够跳过了
overLap = nonzero(logical_and(dataMat[:,item].A>0, \
dataMat[:,j].A>0))[0] #找到对物品 j 和item都打过分的用户
if len(overLap) == 0: similarity = 0
else: similarity = simMeas(dataMat[overLap,item], dataMat[overLap,j]) #利用类似度计算两个物品之间的类似度 print 'the %d and %d similarity is: %f' % (item, j, similarity)
simTotal += similarity
ratSimTotal += similarity * userRating #待推荐物品与用户打过分的物品之间的类似度*用户对物品的打分
if simTotal == 0: return 0
else: return ratSimTotal/simTotal #利用SVD进行分解,可是这里是直接用的库里面的函数
#假设自己实现一个SVD分解。我想就是和矩阵论里面的求解知识是一样的吧,可是可能在求特征值的过程中会比較痛苦
def svdEst(dataMat, user, simMeas, item):
n = shape(dataMat)[1]
simTotal = 0.0; ratSimTotal = 0.0
U,Sigma,VT = la.svd(dataMat) #直接进行分解
Sig4 = mat(eye(4)*Sigma[:4]) #arrange Sig4 into a diagonal matrix
xformedItems = dataMat.T * U[:,:4] * Sig4.I #create transformed items
for j in range(n):
userRating = dataMat[user,j]
if userRating == 0 or j==item: continue
similarity = simMeas(xformedItems[item,:].T,\
xformedItems[j,:].T)
print 'the %d and %d similarity is: %f' % (item, j, similarity)
simTotal += similarity
ratSimTotal += similarity * userRating
if simTotal == 0: return 0
else: return ratSimTotal/simTotal #真正的推荐函数,后面两个函数就是採用的类似度的计算方法和推荐用的方法
def recommend(dataMat, user, N=3, simMeas=cosSim, estMethod=standEst):
unratedItems = nonzero(dataMat[user,:].A==0)[1] #find unrated items nonzero()[1]返回的是非零值所在的行数。返回的是一个元组 if len(unratedItems) == 0: return 'you rated everything'
itemScores = []
for item in unratedItems:
estimatedScore = estMethod(dataMat, user, simMeas, item)
itemScores.append((item, estimatedScore))
return sorted(itemScores, key=lambda jj: jj[1], reverse=True)[:N] #扩展的样例。利用SVD进行图像的压缩
#将图像打印出来
def printMat(inMat, thresh=0.8):
for i in range(32):
for k in range(32):
if float(inMat[i,k]) > thresh:
print 1,
else: print 0,
print '' #最后发现重构出来的数据图是差点儿相同的
def imgCompress(numSV=3, thresh=0.8):
myl = []
for line in open('0_5.txt').readlines():
newRow = []
for i in range(32):
newRow.append(int(line[i]))
myl.append(newRow)
myMat = mat(myl) #将数据读入了myMat其中 print "****original matrix******"
printMat(myMat, thresh)
U,Sigma,VT = la.svd(myMat)
SigRecon = mat(zeros((numSV, numSV))) #构建一个3*3的空矩阵
for k in range(numSV):#construct diagonal matrix from vector
SigRecon[k,k] = Sigma[k]
reconMat = U[:,:numSV]*SigRecon*VT[:numSV,:]
print "****reconstructed matrix using %d singular values******" % numSV
printMat(reconMat, thresh)

通过结果能够看到,降维前和降维后的图片基本都是相似的

机器学习Python实现 SVD 分解的更多相关文章

  1. 机器学习中的矩阵方法04:SVD 分解

    前面我们讲了 QR 分解有一些优良的特性,但是 QR 分解仅仅是对矩阵的行进行操作(左乘一个酉矩阵),可以得到列空间.这一小节的 SVD 分解则是将行与列同等看待,既左乘酉矩阵,又右乘酉矩阵,可以得出 ...

  2. 机器学习之SVD分解

    一.SVD奇异值分解的定义 假设是一个的矩阵,如果存在一个分解: 其中为的酉矩阵,为的半正定对角矩阵,为的共轭转置矩阵,且为的酉矩阵.这样的分解称为的奇异值分解,对角线上的元素称为奇异值,称为左奇异矩 ...

  3. 【机器学习】推荐系统、SVD分解降维

    推荐系统: 1.基于内容的实现:KNN等 2.基于协同滤波(CF)实现:SVD → pLSA(从LSA发展而来,由SVD实现).LDA.GDBT SVD算是比较老的方法,后期演进的主题模型主要是pLS ...

  4. 用Python做SVD文档聚类---奇异值分解----文档相似性----LSI(潜在语义分析)

    转载请注明出处:电子科技大学EClab——落叶花开http://www.cnblogs.com/nlp-yekai/p/3848528.html SVD,即奇异值分解,在自然语言处理中,用来做潜在语义 ...

  5. SVD分解技术详解

    版权声明: 本文由LeftNotEasy发布于http://leftnoteasy.cnblogs.com, 本文可以被全部的转载或者部分使用,但请注明出处,如果有问题,请联系wheeleast@gm ...

  6. 【线性代数】6-7:SVD分解(Singular Value Decomposition-SVD)

    title: [线性代数]6-7:SVD分解(Singular Value Decomposition-SVD) categories: Mathematic Linear Algebra keywo ...

  7. 机器学习---python环境搭建

    一 安装python2.7 去https://www.python.org/downloads/ 下载,然后点击安装,记得记住你的安装路径,然后去设置环境变量,这些自行百度一下就好了. 由于2.7没有 ...

  8. SVD分解的理解[转载]

    http://www.bfcat.com/index.php/2012/03/svd-tutorial/ SVD分解(奇异值分解),本应是本科生就掌握的方法,然而却经常被忽视.实际上,SVD分解不但很 ...

  9. SVD分解技术数学解释

    SVD分解 SVD分解是LSA的数学基础,本文是我的LSA学习笔记的一部分,之所以单独拿出来,是因为SVD可以说是LSA的基础,要理解LSA必须了解SVD,因此将LSA笔记的SVD一节单独作为一篇文章 ...

随机推荐

  1. 电子助视仪 对比增强算法 二十种色彩模式(Electronic Video Magnifier, 20 color mode)

    电子助视仪 是一种将原始彩色图像转换为某种对比度高的图像,例如将原始图像变换为黑底白字,红底白字,白底红字,蓝底黄字,黄字蓝底等等.电子助视仪的主要应用场景为为老人或者特殊弱视人群的阅读.国内国外均有 ...

  2. Android 5.0 源代码结构

    本节书摘来自异步社区<深入理解Android 5 源代码>一书中的第2章,第2.2节分析Android源代码结构,作者 李骏. 网址:https://yq.aliyun.com/artic ...

  3. windows组策略和共享

    Author: Jin Date: 20140585 ENV: win2008 R2 5年没弄windows了,现在随便弄弄,说实话不太喜欢windows,不出问题时候很方便,一出问题很头大.所有东西 ...

  4. 解决idea 控制台中文乱码

    打开IntelliJ IDEA 14.0安装路径,小编的安装路径为:D:\Program Files\JetBrains\IntelliJ IDEA 14.0\bin 找到idea.exe.vmopt ...

  5. patch补丁命令 P1 P0 P2

    http://fancyxinyu.blog.163.com/blog/static/1823213662013719115245699/ http://blog.chinaunix.net/uid- ...

  6. C#遍历系统所安装的打印机,使用WMI方式获取打印机的所有属性

    有网友发消息来询问,C#如何遍历系统已经安装的所有打印机,并获得每个打印机的相关信息,如:端口,名称等等 C#里面,虽然在 System.Drawing.Printing 这个namespace下,提 ...

  7. 取消SVN版本号控制的bash脚本

    原理非常easy,递归删除当前文件夹下全部的 .svn 文件. 把 .svn 换成 .git 就可以用于删除 git 控制

  8. Bootstrap 3之美03-独立行,文字环绕,图片自适应,隐藏元素

    本篇主要包括: ■  添加独立的一行■  文字环绕■  图片自适应■  隐藏元素 添加独立的一行 在id为body的section和id为main的section之间,添加2张图片. 我们发现,新加的 ...

  9. MySQL数据库事务各隔离级别加锁情况--read committed && MVCC(转)

    本文转自https://m.imooc.com/article/details?article_id=17290 感谢作者 上篇记录了我对MySQL 事务 隔离级别read uncommitted的理 ...

  10. 【docker】centOS7上部署的mysql和spring boot服务,要求,mysql的时间、java程序服务的时间和宿主机的时间完全保持一致【修改mysql时区,临时和永久】【修改spring boot配置文件时区】【修改docker启动spring boot实例程序时区】

    要求:centOS7上部署的mysql和spring boot服务,要求,mysql的时间.java程序服务的时间和宿主机的时间完全保持一致: ============================ ...