机器学习Python实现 SVD 分解
这篇文章主要是结合机器学习实战将推荐算法和SVD进行对应的结合
不论什么一个矩阵都能够分解为SVD的形式
事实上SVD意义就是利用特征空间的转换进行数据的映射,后面将专门介绍SVD的基础概念。先给出python,这里先给出一个简单的矩阵。表示用户和物品之间的关系
这里我自己有个疑惑?
对这样一个DATA = U(Z)Vt
这里的U和V真正的几何含义 : 书上的含义是U将物品映射到了新的特征空间, V的转置 将 用户映射到了新的特征空间
以下是代码实现。同一时候SVD还能够用于降维,降维的操作就是通过保留值比較的神秘值
# -*- coding: cp936 -*-
'''
Created on Mar 8, 2011 @author: Peter
'''
from numpy import *
from numpy import linalg as la #用到别名 #这里主要结合推荐系统介绍SVD,所以这里的数据都能够看成是用户对物品的一个打分
def loadExData():
return[[0, 0, 0, 2, 2],
[0, 0, 0, 3, 3],
[0, 0, 0, 1, 1],
[1, 1, 1, 0, 0],
[2, 2, 2, 0, 0],
[5, 5, 5, 0, 0],
[1, 1, 1, 0, 0]] def loadExData2():
return[[0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 5],
[0, 0, 0, 3, 0, 4, 0, 0, 0, 0, 3],
[0, 0, 0, 0, 4, 0, 0, 1, 0, 4, 0],
[3, 3, 4, 0, 0, 0, 0, 2, 2, 0, 0],
[5, 4, 5, 0, 0, 0, 0, 5, 5, 0, 0],
[0, 0, 0, 0, 5, 0, 1, 0, 0, 5, 0],
[4, 3, 4, 0, 0, 0, 0, 5, 5, 0, 1],
[0, 0, 0, 4, 0, 4, 0, 0, 0, 0, 4],
[0, 0, 0, 2, 0, 2, 5, 0, 0, 1, 2],
[0, 0, 0, 0, 5, 0, 0, 0, 0, 4, 0],
[1, 0, 0, 0, 0, 0, 0, 1, 2, 0, 0]] def ecludSim(inA,inB):
return 1.0/(1.0 + la.norm(inA - inB)) #计算向量的第二范式,相当于直接计算了欧式距离 def pearsSim(inA,inB):
if len(inA) < 3 : return 1.0
return 0.5+0.5*corrcoef(inA, inB, rowvar = 0)[0][1] #corrcoef直接计算皮尔逊相关系数 def cosSim(inA,inB):
num = float(inA.T*inB)
denom = la.norm(inA)*la.norm(inB)
return 0.5+0.5*(num/denom) #计算余弦类似度 #协同过滤算法
#dataMat 用户数据 user 用户 simMeas 类似度计算方式 item 物品
def standEst(dataMat, user, simMeas, item):
n = shape(dataMat)[1] #计算列的数量,物品的数量
simTotal = 0.0; ratSimTotal = 0.0
for j in range(n):
userRating = dataMat[user,j]
print(dataMat[user,j])
if userRating == 0: continue #假设用户u没有对物品j进行打分。那么这个推断就能够跳过了
overLap = nonzero(logical_and(dataMat[:,item].A>0, \
dataMat[:,j].A>0))[0] #找到对物品 j 和item都打过分的用户
if len(overLap) == 0: similarity = 0
else: similarity = simMeas(dataMat[overLap,item], dataMat[overLap,j]) #利用类似度计算两个物品之间的类似度 print 'the %d and %d similarity is: %f' % (item, j, similarity)
simTotal += similarity
ratSimTotal += similarity * userRating #待推荐物品与用户打过分的物品之间的类似度*用户对物品的打分
if simTotal == 0: return 0
else: return ratSimTotal/simTotal #利用SVD进行分解,可是这里是直接用的库里面的函数
#假设自己实现一个SVD分解。我想就是和矩阵论里面的求解知识是一样的吧,可是可能在求特征值的过程中会比較痛苦
def svdEst(dataMat, user, simMeas, item):
n = shape(dataMat)[1]
simTotal = 0.0; ratSimTotal = 0.0
U,Sigma,VT = la.svd(dataMat) #直接进行分解
Sig4 = mat(eye(4)*Sigma[:4]) #arrange Sig4 into a diagonal matrix
xformedItems = dataMat.T * U[:,:4] * Sig4.I #create transformed items
for j in range(n):
userRating = dataMat[user,j]
if userRating == 0 or j==item: continue
similarity = simMeas(xformedItems[item,:].T,\
xformedItems[j,:].T)
print 'the %d and %d similarity is: %f' % (item, j, similarity)
simTotal += similarity
ratSimTotal += similarity * userRating
if simTotal == 0: return 0
else: return ratSimTotal/simTotal #真正的推荐函数,后面两个函数就是採用的类似度的计算方法和推荐用的方法
def recommend(dataMat, user, N=3, simMeas=cosSim, estMethod=standEst):
unratedItems = nonzero(dataMat[user,:].A==0)[1] #find unrated items nonzero()[1]返回的是非零值所在的行数。返回的是一个元组 if len(unratedItems) == 0: return 'you rated everything'
itemScores = []
for item in unratedItems:
estimatedScore = estMethod(dataMat, user, simMeas, item)
itemScores.append((item, estimatedScore))
return sorted(itemScores, key=lambda jj: jj[1], reverse=True)[:N] #扩展的样例。利用SVD进行图像的压缩
#将图像打印出来
def printMat(inMat, thresh=0.8):
for i in range(32):
for k in range(32):
if float(inMat[i,k]) > thresh:
print 1,
else: print 0,
print '' #最后发现重构出来的数据图是差点儿相同的
def imgCompress(numSV=3, thresh=0.8):
myl = []
for line in open('0_5.txt').readlines():
newRow = []
for i in range(32):
newRow.append(int(line[i]))
myl.append(newRow)
myMat = mat(myl) #将数据读入了myMat其中 print "****original matrix******"
printMat(myMat, thresh)
U,Sigma,VT = la.svd(myMat)
SigRecon = mat(zeros((numSV, numSV))) #构建一个3*3的空矩阵
for k in range(numSV):#construct diagonal matrix from vector
SigRecon[k,k] = Sigma[k]
reconMat = U[:,:numSV]*SigRecon*VT[:numSV,:]
print "****reconstructed matrix using %d singular values******" % numSV
printMat(reconMat, thresh)
通过结果能够看到,降维前和降维后的图片基本都是相似的
机器学习Python实现 SVD 分解的更多相关文章
- 机器学习中的矩阵方法04:SVD 分解
前面我们讲了 QR 分解有一些优良的特性,但是 QR 分解仅仅是对矩阵的行进行操作(左乘一个酉矩阵),可以得到列空间.这一小节的 SVD 分解则是将行与列同等看待,既左乘酉矩阵,又右乘酉矩阵,可以得出 ...
- 机器学习之SVD分解
一.SVD奇异值分解的定义 假设是一个的矩阵,如果存在一个分解: 其中为的酉矩阵,为的半正定对角矩阵,为的共轭转置矩阵,且为的酉矩阵.这样的分解称为的奇异值分解,对角线上的元素称为奇异值,称为左奇异矩 ...
- 【机器学习】推荐系统、SVD分解降维
推荐系统: 1.基于内容的实现:KNN等 2.基于协同滤波(CF)实现:SVD → pLSA(从LSA发展而来,由SVD实现).LDA.GDBT SVD算是比较老的方法,后期演进的主题模型主要是pLS ...
- 用Python做SVD文档聚类---奇异值分解----文档相似性----LSI(潜在语义分析)
转载请注明出处:电子科技大学EClab——落叶花开http://www.cnblogs.com/nlp-yekai/p/3848528.html SVD,即奇异值分解,在自然语言处理中,用来做潜在语义 ...
- SVD分解技术详解
版权声明: 本文由LeftNotEasy发布于http://leftnoteasy.cnblogs.com, 本文可以被全部的转载或者部分使用,但请注明出处,如果有问题,请联系wheeleast@gm ...
- 【线性代数】6-7:SVD分解(Singular Value Decomposition-SVD)
title: [线性代数]6-7:SVD分解(Singular Value Decomposition-SVD) categories: Mathematic Linear Algebra keywo ...
- 机器学习---python环境搭建
一 安装python2.7 去https://www.python.org/downloads/ 下载,然后点击安装,记得记住你的安装路径,然后去设置环境变量,这些自行百度一下就好了. 由于2.7没有 ...
- SVD分解的理解[转载]
http://www.bfcat.com/index.php/2012/03/svd-tutorial/ SVD分解(奇异值分解),本应是本科生就掌握的方法,然而却经常被忽视.实际上,SVD分解不但很 ...
- SVD分解技术数学解释
SVD分解 SVD分解是LSA的数学基础,本文是我的LSA学习笔记的一部分,之所以单独拿出来,是因为SVD可以说是LSA的基础,要理解LSA必须了解SVD,因此将LSA笔记的SVD一节单独作为一篇文章 ...
随机推荐
- 设置Linux SSH登录后的欢迎信息
在这几个文件,各自都设置一下: /etc/motd /etc/issue 在/etc/ssh/sshd_config添加“Banner /etc/ssh/ssh_login_banner” 内容: \ ...
- 【scrapy】使用方法概要(二)(转)
[请初学者作为参考,不建议高手看这个浪费时间] 上一篇文章里介绍了scrapy的主要优点及linux下的安装方式,此篇文章将简要介绍scrapy的爬取过程,本文大部分内容源于scrapy文档,翻译并加 ...
- The YubiKey -- HOW IT WORKS
A single YubiKey has multiple functions for protecting access to your email, your apps and your phys ...
- XDM、GDM和KDM
XDM.GDM.KDM是三种X Window的显示管理器 (1)XDM(默认的X Window System Display Manager)(2)GDM(gnome提供的Display Manage ...
- 四种更新UI的方法
笔记: // 使用handler.post(Runnable)更新UI public void updateUI_Fun1() { new Thread() { public void run() ...
- Selenium2+python自动化55-unittest之装饰器(@classmethod)
前言 前面讲到unittest里面setUp可以在每次执行用例前执行,这样有效的减少了代码量,但是有个弊端,比如打开浏览器操作,每次执行用例时候都会重新打开,这样就会浪费很多时间. 于是就想是不是可以 ...
- 如何记录linux终端下的操作日志
如何记录linux终端下的操作日志 在linux终端下,为方便检查操作中可能出现的错误,以及避免屏幕滚屏的限制,我们可以把操作日志记录下来.常用的工具有 screen,script,以及tee等,通过 ...
- scala编程第17章学习笔记(2)——集和映射
默认情况下在使用“Set”或“Map”的时候,获得的都是不可变对象.如果需要的是可变版本,需要先写明引用. 如果同一个源文件中既要用到可变版本,也要用到不可变版本的集合或映射,方法之一是引用包含了可变 ...
- Objective-C:OC内部可变对象和不可变对象的深(复制)拷贝问题思考:
OC内部:可变对象和不可变对象的深(复制)拷贝问题思考: 不可变对象: 例如NSString对象,因为NSString对象是常量字符串,所以,不可以更改其内容,但是可以修改指向该字符串的指针指向 ...
- 第三章 JVM内存回收区域+对象存活的判断+引用类型+垃圾回收线程
注意:本文主要参考自<深入理解Java虚拟机(第二版)> 说明:查看本文之前,推荐先知道JVM内存结构,见<第一章 JVM内存结构> 1.内存回收的区域 堆:这是GC的主要区域 ...